Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788707

RESUMO

Sea urchins are primary herbivores on coral reefs, regulating algal biomass and facilitating coral settlement and growth.1,2,3,4,5,6,7,8,9,10,11,12 Recurring mass mortality events (MMEs) of Diadema species Gray, 1825 have been recorded globally,13,14,15,16,17,18,19,20,21,22,23 the most notorious and ecologically significant of which occurred in the Caribbean in 1983,14,17,19,20 contributing to the shift from coral to algal-dominated ecosystems.17,24,25 Recently, first evidence of Diadema setosum mass mortality was reported from the eastern Mediterranean Sea.23 Here, we report extensive mass mortalities of several diadematoid species inhabiting the Red Sea and Western Indian Ocean (WIO)26,27,28 including first evidence of mortalities in the genus Echinothrix Peters, 1853. Mortalities initiated in the Gulf of Aqaba on December 2022 and span the Red Sea, the Gulf of Oman, and the Western Indian Ocean (Réunion Island), with population declines reaching 100% at some sites. Infected individuals are characterized by spine loss and tissue necrosis, resulting in exposed skeletons (i.e., tests) and mortality. Molecular diagnostics of the 18S rRNA gene confirm the presence of a waterborne scuticociliate protozoan most closely related to Philaster apodigitiformis in infected specimens-identical to the pathogen found in the 2022 Caribbean mass mortality of Diadema antillarum.13,15,18 Collapse of these key benthic grazers in the Red Sea and Western Indian Ocean may lead to algal dominance over corals, threatening the stability of coral reefs on a regional scale.29,30,31,32 We issue a warning regarding the further expansion of mortalities and call for immediate monitoring and conservation efforts for these key ecological species.

2.
R Soc Open Sci ; 10(5): 230251, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234498

RESUMO

The sea urchin Diadema setosum is an ecological key species across its range, particularly on coral reefs. In 2006 D. setosum was first observed in the Mediterranean Sea, and since, it has proliferated to occupy the entire Levantine Basin. Here we report the mass mortality of the invasive D. setosum in the Mediterranean Sea. This is the first report of D. setosum mass mortality. The mortality spans over 1000 km along the Levantine coast of Greece and Turkey. The current mortality shows similar pathologies to previously reported Diadema mass mortality events, suggesting pathogenic infection as the cause of mortalities. Maritime transport, local currents, and fish predation of infected individuals may distribute pathogens at varying geographical scales. Due to the proximity of the Levantine Basin to the Red Sea, the risk of pathogen transport to the native Red Sea D. setosum population is imminent-with potentially catastrophic consequences.

3.
iScience ; 26(5): 106533, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250314

RESUMO

Constraints on organisms possessing a unitary body plan appear almost absent from colonial organisms. Like unitary organisms, however, coral colonies seemingly delay reproduction until reaching a critical size. Elucidating ontogenetic processes, such as puberty and aging are complicated by corals' modular design, where partial mortality and fragmentation lead to distortions in colony size-age relationships. We explored these enigmatic relations and their influence on reproduction by fragmenting sexually mature colonies of five coral species into sizes below the known size at first reproduction, nurturing them for prolonged periods, and examining their reproductive capacity and trade-offs between growth rates and reproductive investment. Most fragments were reproductive regardless of their size, and growth rates hardly affected reproduction. Our findings suggest that once the ontogenetic milestone of puberty is reached, corals retain reproductive capacity irrespective of colony size, highlighting the key role that aging may have in colonial animals, which are commonly considered non-aging.

4.
Front Zool ; 17: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536959

RESUMO

BACKGROUND: Ascidians (phylum Chordata, class Ascidiacea) represent the closest living invertebrate relatives of the vertebrates and constitute an important model for studying the evolution of chordate development. The solitary ascidian Polycarpa mytiligera exhibits a robust regeneration ability, unique among solitary chordates, thus offering a promising new model for regeneration studies. Understanding its reproductive development and establishing land-based culturing methods is pivotal for utilizing this species for experimental studies. Its reproduction cycle, spawning behavior, and developmental processes were therefore studied in both the field and the lab, and methods were developed for its culture in both open and closed water systems. RESULTS: Field surveys revealed that P. mytiligera's natural recruitment period starts in summer (June) and ends in winter (December) when seawater temperature decreases. Laboratory experiments revealed that low temperature (21 °C) has a negative effect on its fertilization and development. Although spontaneous spawning events occur only between June and December, we were able to induce spawning under controlled conditions year-round by means of gradual changes in the environmental conditions. Spawning events, followed by larval development and metamorphosis, took place in ascidians maintained in either artificial or natural seawater facilities. P. mytiligera's fast developmental process indicated its resemblance to other oviparous species, with the larvae initiating settlement and metamorphosis at about 12 h post-hatching, and reaching the juvenile stage 3 days later. CONCLUSIONS: Polycarpa mytiligera can be induced to spawn in captivity year-round, independent of the natural reproduction season. The significant advantages of P. mytiligera as a model system for regenerative studies, combined with the detailed developmental data and culturing methods presented here, will contribute to future research addressing developmental and evolutionary questions, and promote the use of this species as an applicable model system for experimental studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...