Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(1): 159-166, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175017

RESUMO

A fiber-connectorized K-band integrated-optics two-telescope beam combiner was developed for long-baseline interferometry at the CHARA telescope array utilizing the ultrafast laser inscription (ULI) technique. Single-mode waveguide insertion losses were measured to be ∼1.1d B over the 2-2.3 µm window. The development of asymmetric directional couplers enabled the construction of a beam combiner that includes a 50:50 coupler for interferometric combination and two ∼75:25 couplers for photometric calibration. The visibility of the bare beam combiner was measured at 87% and then at 82% after fiber-connectorization by optimizing the input polarization. These results indicate that ULI technique can fabricate efficient fiber-connectorized K-band beam combiners for astronomical purposes.

2.
Appl Opt ; 62(29): 7596-7610, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855467

RESUMO

We have built and characterized, to our knowledge, the first six-telescope discrete beam combiner (DBC) for stellar interferometry in the astronomical J-band. It is the DBC with the largest number of beam combinations and was manufactured using ultrafast laser inscription in borosilicate glass, with a throughput of ≈56%. For calibration of the visibility-to-pixel matrix, we use a two-input Michelson interferometer and extract the complex visibility. A visibility amplitude of 1.05 and relative precision of 2.9% and 3.8% are extracted for 1328 nm and 1380 nm, respectively. Broadband (≤40n m) characterization is affected by dispersion but shows similar performance.

3.
Opt Express ; 29(16): 24947-24971, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614838

RESUMO

We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on a silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerical simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000-60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy.

4.
Appl Opt ; 60(19): D9-D14, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263824

RESUMO

In ground-based astronomy, starlight distorted by the atmosphere couples poorly into single-mode waveguides, but a correction by adaptive optics, even if only partial, can boost coupling into the few-mode regime, allowing the use of photonic lanterns to convert into multiple single-mode beams. Corrected wavefronts result in focal patterns that couple mostly with circularly symmetric waveguide modes. A mode-selective photonic lantern is hence proposed to convert multimode light into a subset of single-mode waveguides of the standard photonic lantern, thereby reducing the required number of outputs. We ran simulations to show that only two out of the six waveguides of a 1×6 photonic lantern carry >95% of the coupled light to the outputs at D/r0<10 if the wavefront is partially corrected and the photonic lantern is made mode selective.

5.
Appl Opt ; 60(19): D129-D142, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263868

RESUMO

We present the first on-sky results of a four-telescope integrated optics discrete beam combiner (DBC) tested at the 4.2 m William Herschel Telescope. The device consists of a four-input pupil remapper followed by a DBC and a 23-output reformatter. The whole device was written monolithically in a single alumino-borosilicate substrate using ultrafast laser inscription. The device was operated at astronomical H-band (1.6 µm), and a deformable mirror along with a microlens array was used to inject stellar photons into the device. We report the measured visibility amplitudes and closure phases obtained on Vega and Altair that are retrieved using the calibrated transfer matrix of the device. While the coherence function can be reconstructed, the on-sky results show significant dispersion from the expected values. Based on the analysis of comparable simulations, we find that such dispersion is largely caused by the limited signal-to-noise ratio of our observations. This constitutes a first step toward an improved validation of the DBC as a possible beam combination scheme for long-baseline interferometry.

6.
Sensors (Basel) ; 20(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255459

RESUMO

Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.

7.
Opt Express ; 28(23): 34346-34361, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182907

RESUMO

We show the results of simulation and experimental study of a 4-telescope zig-zag discrete beam combiner (DBC) for long-baseline stellar interferometry working at the astronomical L band (3 - 4 µm) under the influence of a narrow bandwidth light source. Following Saviauk et al. (2013), we used a quasi-monochromatic visibility-to-pixel matrix (V2PM) for retrieving the complex coherence functions from simulated and experimentally measured power at the output of the device. Simulation and coefficient of determination (R2) measurements show that we are able to retrieve the visibility amplitudes with >95 % accuracy of our chromatic model source up to a bandwidth of 100 nm centred at 3.5 µm. We characterized a DBC manufactured by 3D ultra-fast laser inscription (ULI) written on gallium lanthanum sulphate (GLS). Experimental results showed retrieval of visibility amplitude with an accuracy of 80-90 % at 69 nm bandwidth, validating our simulation. The standard deviation of experimental phase residuals are between 0.1-0.4 rad, which shows that the retrieval procedure is sufficient to get good quality images, where phase perturbations of less than 1 rad are expected under good seeing conditions for astronomical applications.

8.
Opt Express ; 28(19): 27797-27807, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988065

RESUMO

The design of a complex phase mask (CPM) for inscribing multi-notch fiber Bragg grating filters in optical fibers for OH suppression in astronomy is presented. We demonstrate the steps involved in the design of a complex mask with discrete phase steps, following a detailed analysis of fabrication constraints. The phase and amplitude of the complex grating is derived through inverse modelling from the desired aperiodic filter spectrum, following which the phase alone is encoded into the surface relief of a CPM. Compared to a complicated "running-light" Talbot interferometer based inscription setup where the phase of the inscribing beam is controlled by electro- or acousto-optic modulators and synchronized to a moving fiber translation stage, CPM offers the well-known convenience and reproducibility of the standard phase mask inscription technique. We have fabricated a CPM that can suppress 37 sky emission lines between 1508 nm to 1593 nm, with a potential of increasing to 99 channels for suppressing near-infrared (NIR) OH-emission lines generated in the upper atmosphere and improving the performance of ground-based astronomical telescopes.

9.
Sensors (Basel) ; 19(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650537

RESUMO

A grating-less fiber vector bend sensor is demonstrated using a standard single mode fiber spliced to a multimode fiber as a multimode interference device. The ring-shaped light intensity distribution at the end of the multimode fiber is subject to a vector transition in response to the fiber bend. Instead of comprehensive imaging processing for the analysis, the image can be tapped out by a seven-core fiber spliced to the other end of the multimode fiber. The seven-core fiber is further guided to seven single mode fibers via a commercial fan-out device. By comparing the relative light intensities received at the seven outputs, both the bend radius and its direction can be determined. Experiment has shown that a slight bend displacement of 10 µm over a 1.2-cm-long multimode fiber in the X direction (bend angle of 0.382°) causes a distinctive power imbalance of 4.6 dB between two chosen outputs (numbered C4 and C7). For the same displacement in the Y direction, the power ratio between the previous two outputs C4 and C7 remains constant, while the imbalance between another pair (C3 and C4) rises significantly to 7.0 dB.

10.
J Biomed Opt ; 23(10): 1-11, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30288965

RESUMO

Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Nevo/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Pele/diagnóstico por imagem , Análise Espectral Raman/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Animais , Estudos de Casos e Controles , Desenho de Equipamento , Antebraço/diagnóstico por imagem , Humanos , Nevo/química , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Pele/química , Neoplasias Cutâneas/química , Análise Espectral Raman/instrumentação , Suínos
11.
Sensors (Basel) ; 14(11): 21968-80, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25420149

RESUMO

Until now, spatially resolved Raman Spectroscopy has required to scan a sample under investigation in a time-consuming step-by-step procedure. Here, we present a technique that allows the capture of an entire Raman image with only one single exposure. The Raman scattering arising from the sample was collected with a fiber-coupled high-performance astronomy spectrograph. The probe head consisting of an array of 20 × 20 multimode fibers was linked to the camera port of a microscope. To demonstrate the high potential of this new concept, Raman images of reference samples were recorded. Entire chemical maps were received without the need for a scanning procedure.

12.
Opt Lett ; 39(12): 3508-11, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978523

RESUMO

Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23 nm/m(-1) and 3.57 dB/m(-1) to the ultra-low curvature values from 0 to 1 m(-1). This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...