Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 123(10): 6413-6544, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186959

RESUMO

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

2.
Langmuir ; 37(15): 4622-4631, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33819051

RESUMO

Efficient carbon capture from stationary point sources can be achieved using hybrid adsorbents comprising nanoporous substrates coated with imine polymers. The physical properties of the CO2-adsorbing, nanodispersed polymers are altered by their interactions with the substrate, which in turn may impact their capture capacity. We study silica and carbon nanoporous substrates with different pore morphologies that were impregnated with polymer imine with the goal of characterizing the polymer dispersions in the pores. For silica and carbon samples, the mean densities of confined poly(ethylene imine) (PEI) were measured as functions of polymer loading and temperature using small-angle neutron scattering. Strong densification is found for imine polymers imbibed in mesoporous carbon. PEI in nanoporous silica does not experience this strong densification. At high loadings, plugs form, preferably at the pore throats, and can reduce accessible porosity. CO2 capture measurements show that PEI interactions with the substrate play an important role. PEI in carbon shows the highest capture capacity at low temperatures and the lowest CO2 adsorption at high temperatures, making it well-suited for temperature swing adsorption applications.

3.
ACS Appl Mater Interfaces ; 13(13): 15811-15819, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769780

RESUMO

Hydraulic fracturing of low-permeability rocks significantly enhances hydrocarbon production from unconventional reservoirs. However, fluid transport through low-permeability rocks and the influence of geochemical transformations on pore networks are poorly constrained. Mineral reactivity during interactions with injected water may alter the physical nature of the rock, which may affect hydrocarbon mobility. To assess alterations to the rock, we have previously conducted a hydrothermal experiment that reacted cubed rock samples (1 cm3) with synthetic hydraulic fracturing fluid (HFF) to simulate physicochemical reactivity during hydraulic fracturing. Here, we analyze unreacted and reacted rocks by small-angle neutron scattering and high-pressure mercury intrusion to determine how the pore networks of unconventional reservoir rocks are influenced by the reaction with hydraulic fracturing injectates. Our results suggest that fluid-rock interactions exhibit a two-fold influence on hydrocarbon recovery, promoting both hydrocarbon mobilization and transport. Pore-matrix interfaces smooth via the removal of clay mineral surface asperities, reducing the available surface area for hydrocarbon adsorption by 12-75%. Additionally, HFF-induced dissolution creates new pores with diameters ranging from 800-1400 nm, increasing the permeability of the rocks by a factor of 5-10. These two consequences of mineral dissolution likely act in concert to release hydrocarbons from the host rock and facilitate transport through the rock during unconventional reservoir production.

4.
Langmuir ; 36(14): 3703-3712, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32202121

RESUMO

The crucial roles of the ionization state and counterion presence on the phase behavior of fatty acid in aqueous solutions are well-established. However, the effects of counterions on the adsorption and morphological state of fatty acid on nanoparticle surfaces are largely unknown. This knowledge gap exists due to the high complexity of the interactions between nanoparticles, counterions, and fatty acid molecules in aqueous solution. In this study, we use adsorption isotherms, small angle neutron scattering, and all-atom molecular dynamic simulations to investigate the effect of addition of ethanolamine as a counterion on the adsorption and self-assembly of decanoic acid onto aminopropyl-modified silica nanoparticles. We show that the morphology of the fatty acid assemblies on silica nanoparticles changes from discrete surface patches to a continuous bilayer by increasing concentration of the counterion. This morphological behavior of fatty acid on the oppositely charged nanoparticle surface alters the interfacial activity of the fatty acid-nanoparticle complex and thus governs the stability of the foam formed by the mixture. Our study provides new insights into the structure-property relationship of fatty acid-nanoparticle complexes and outlines a framework to program the stability of foams formed by mixtures of nanoparticles and amphiphiles.

5.
J Chem Phys ; 152(8): 084707, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113366

RESUMO

Fundamental understanding of the subcritical/supercritical behavior of key hydrocarbon species inside nano-porous matrices at elevated pressure and temperature is less developed compared to bulk fluids, but this knowledge is of great importance for chemical and energy engineering industries. This study explores in detail the structure and dynamics of ethane (C2H6) fluid confined in silica nanopores, with a focus on the effects of pressure and different ratios of C2H6 and CO2 at non-ambient temperature. Quasi-elastic neutron scattering (QENS) experiments were carried out for the pure C2H6, C2H6:CO2 = 3:1, and 1:3 mixed fluids confined in 4-nm cylindrical silica pores at three different pressures (30 bars, 65 bars, and 100 bars) at 323 K. Two Lorentzian functions were required to fit the spectra, corresponding to fast and slow translational motions. No localized motions (rotations and vibrations) were detected. Higher pressures resulted in hindrances of the diffusivity of C2H6 molecules in all systems investigated. Pore size was found to be an important factor, i.e., the dynamics of confined C2H6 is more restricted in smaller pores compared to the larger pores used in previous studies. Molecular dynamics simulations were performed to complement the QENS experiment at 65 bars, providing supportive structure information and comparable dynamic information. The simulations indicate that CO2 molecules are more strongly attracted to the pore surface compared to C2H6. The C2H6 molecules interacting with or near the pore surface form a dense first layer (L1) close to the pore surface and a second less dense layer (L2) extending into the pore center. Both the experiments and simulations revealed the role that CO2 molecules play in enhancing C2H6 diffusion ("molecular lubrication") at high CO2:C2H6 ratios. The energy scales of the two dynamic components, fast and slow, quantified by both techniques, are in very good agreement. Herein, the simulations identified the fast component as the main contributor to the dynamics. Molecule motions in the L2 region are mostly responsible for the dynamics (fast and slow) that can be detected by the instrument.

6.
Phys Chem Chem Phys ; 21(45): 25035-25046, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31690917

RESUMO

Hydrocarbons confined in porous media find applications in a wide variety of industries and therefore their diffusive behavior is widely studied. Most of the porous media found in natural environments are laden with water, which might affect the confined hydrocarbons. To quantify the effect of hydration, we report here a combined quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulation study on the dynamics of propane confined in the 1.5 nm-wide micropores of MCM-41-S in the presence of water at 230 and 250 K. To eliminate the strong incoherent signal from water and emphasize the propane signal we have used heavy water (D2O). QENS data show two dynamically different populations of propane in MCM-41-S and suggest that the presence of water hinders the diffusion of propane. Weak elastic contributions to the QENS spectra suggest that only long-range translational motion of propane molecules contributes to the quasielastic broadening. MD simulations carried out using a model cylindrical silica pore of 1.6 nm diameter filled with water and propane agree with the experimental finding of water hindering the diffusion of propane. Further, the simulation results suggest that the slowing down of propane motions is a function of the water content within the pore and is stronger at higher water contents. At high water content, the structure and the dynamics, both translational and rotational, of propane are severely impacted. Simulation data suggest that the rotational motion of the propane molecule occurs on time scales much faster than those accessible with the QENS instrument used, and thus explain the weak elastic contribution to the QENS spectra measured in the experiments. This study shows the effects of hydration on the structure and dynamics of volatiles in porous media, which are of interest for fundamental understanding and applied studies of confined fluids.

7.
J Phys Chem A ; 122(33): 6736-6745, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30040898

RESUMO

Fluids confined in nanopores exhibit significant deviations in their structure and dynamics from the bulk behavior. Although phase, structural, and diffusive behaviors of confined fluids have been investigated and reported extensively, confinement effects on the vibrational properties are less understood. We study the vibrational behavior of propane confined in 1.5 nm nanopores of MCM-41-S using inelastic neutron scattering (INS) and molecular dynamics (MD) simulations. Vibrational spectra have been obtained from INS data as functions of temperature and pressure. At ambient pressure, a strong quasielastic signal observed in the INS spectrum at 80 K suggests that confined propane remains liquid below the bulk phase melting point of 85 K. The quasielastic signal is heavily suppressed when either the pressure is increased to 1 kbar or the temperature is lowered to 30 K, indicating solidification of pore-confined propane. Confinement in MCM-41-S pores results in a glass-like state of propane that exhibits a relatively featureless low-energy vibrational spectrum compared to that of the bulk crystalline propane. Increasing the pressure to 3 kbar results in hardening of the intermolecular and methyl torsional modes. The INS data are used for estimating the isochoric specific heat of confined propane, which is compared with the specific heat of bulk propane reported in literature. Data from MD simulations are used to calculate the vibrational power spectra that agree qualitatively with the experimental data. Simulation data also suggest a reduction of the structural ordering (positional, orientational, and intramolecular) of propane under confinement.

8.
ACS Appl Mater Interfaces ; 9(43): 38125-38134, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016100

RESUMO

Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D2O/D isotopic tracer and H2O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at room temperature. Further, technologically important microalloying additions of <1 wt % Zr and Nd used to improve the manufacturability and mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2-3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H2. These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.

9.
Langmuir ; 33(42): 11406-11416, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28810734

RESUMO

Adsorption and aggregation of nonionic surfactants at oxide surfaces has been studied extensively in the past, but only for concentrations below and near the critical micelle concentration. Here we report an adsorption study of a short-chain surfactant (C6E3) in porous silica glass of different pore sizes (7.5 to 50 nm), covering a wide composition range up to 50 wt % in a temperature range from 20 °C to the LCST. Aggregative adsorption is observed at low concentrations, but the excess concentration of C6E3 in the pores decreases and approaches zero at higher bulk concentrations. Strong depletion of surfactant (corresponding to enrichment of water in the pores) is observed in materials with wide pores at high bulk concentrations. We propose an explanation for the observed pore-size dependence of the azeotropic point. Mesoscale simulations based on dissipative particle dynamics (DPD) were performed to reveal the structural origin of this transition from the adsorption to the depletion regime. The simulated adsorption isotherms reproduce the behavior found in the 7.5 nm pores. The calculated bead density profiles indicate that the repulsive interaction of surfactant head groups causes a depletion of surfactant in the region around the corona of the surface micelles.

10.
J Phys Chem B ; 121(27): 6721-6731, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28558209

RESUMO

Composite gas sorbents, formed from an active polymer phase and a porous support, are promising materials for the separation of acid gases from a variety of gas streams. Significant changes in sorption performance (capacity, rate, stability etc.) can be achieved by tuning the properties of the polymer and the nature of interactions between polymer and support. Here we utilize quasielastic neutron scattering (QENS) and coarse-grained molecular dynamics (MD) simulations to characterize the dynamic behavior of the most commonly reported polymer in such materials, poly(ethylenimine) (PEI), both in bulk form and when supported in a mesoporous silica framework. The polymer chain dynamics (rotational and translational diffusion) are characterized using two neutron backscattering spectrometers that have overlapping time scales, ranging from picoseconds to a few nanoseconds. Two modes of motion are detected for the PEI molecule in QENS. At low energy transfers, a "slow process" on the time scale of ∼200 ps is found and attributed to jump-mediated, center-of-mass diffusion. A second, "fast process" at ∼20 ps scale is also found and is attributed to a locally confined, jump-diffusion. Characteristic data (time scale and spectral weight) of these processes are compared to those characterized by MD, and reasonable agreement is found. For the nanopore-confined PEI, we observe a significant reduction in the time scale of polymer motion as compared to the bulk. The impacts of silica surface functionalization and of polymer fill fraction in the silica pores (controlling the portion of polymer molecules in contact with the pore walls), are both studied in detail. Hydrophobic functionalization of the silica leads to an increase of the PEI mobility above that in native silanol-terminated silica, but the dynamics are still slower than those in bulk PEI. Sorbents with faster PEI dynamics are also found to be more efficient for CO2 capture, possibly because sorption sites are more accessible than those in systems with slower PEI dynamics. Thus, this work supports the existence of a link between the affinity of the support for PEI and the accessibility of active sorbent functional groups.

11.
ACS Appl Mater Interfaces ; 8(14): 8859-63, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27010763

RESUMO

MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. In agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene against changing environmental conditions.

12.
Langmuir ; 32(11): 2617-25, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26915732

RESUMO

The structure and dynamics of a model branched polymer was investigated through molecular dynamics simulations and neutron scattering experiments. The polymer confinement, monomer concentration, and solvent quality were varied in the simulations and detailed comparisons between the calculated structural and dynamical properties of the unconfined polymer and those confined within an adsorbing and nonadsorbing cylindrical pore, representing the silica based structural support of the composite, were made. The simulations show a direct relationship in the structure of the polymer and the nonmonotonic dynamics as a function of monomer concentration within an adsorbing cylindrical pore. However, the nonmonotonic behavior disappears for the case of the branched polymer within a nonadsorbing cylindrical pore. Overall, the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies of branched poly(ethylenimine) in mesoporous silica (SBA-15) of comparable size, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting carbon dioxide adsorption.

13.
Environ Sci Technol ; 50(6): 2811-29, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26849204

RESUMO

Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material's porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. Here we discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.


Assuntos
Água Subterrânea/química , Fenômenos Geológicos , Minerais , Modelos Teóricos , Porosidade
14.
Soft Matter ; 10(45): 9193-200, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25328976

RESUMO

The structural and dynamical properties of dicationic ionic liquids (DILs) [Cn(mim)2](Tf2N)2, that is, 3-methylimidazolium dications separated by an alkyl chain and with bis(trifluoromethylsulfonyl)amide as the anion, were investigated by molecular dynamics (MD) simulation in combination with small/wide-angle X-ray scattering (SWAXS) measurements. Enhanced spatial heterogeneity is observed as the DIL chain length is increased, characterized by the changes in the scattering and the increased heterogeneity order parameter (HOP). Temperature variation imposes only slight influences on the local structures of DILs compared to monocationic ionic liquids (MILs). The peaks at 0.9 Å(-1) and 1.4 Å(-1) of the structure function shift towards low Q as the temperature increases, in a similar manner to MILs, and changes in peak positions in response to temperature changes are reflected in HOP variations. However, the prepeak shift with increasing temperature is ∼3 times smaller in DILs compared to MILs, and both MD and SWAXS indicate a DIL-specific prepeak shifting. Furthermore, the high ion pair/ion cage stability in DILs is indicative of high thermal stability and relative insensitivity of structural heterogeneity to temperature variation, which might be caused by the stronger Coulombic interactions in DILs.

15.
Environ Sci Technol ; 48(11): 6177-83, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24815551

RESUMO

Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media.


Assuntos
Carbonato de Cálcio/química , Nanoporos/ultraestrutura , Precipitação Química , Modelos Teóricos , Porosidade , Dióxido de Silício/química
16.
Environ Sci Technol ; 47(1): 205-11, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22917276

RESUMO

Geologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO(2) densities of ≈ 0.15 g/cm(3), followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO(2) bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO(2) are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO(2) in the clay pores is relatively stable over a wide range of CO(2) pressures at a given temperature, indicating the formation of a clay-CO(2) phase. At the excess sorption maximum, increasing CO(2) sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.


Assuntos
Bentonita/química , Dióxido de Carbono/química , Adsorção , Sequestro de Carbono , Difração de Nêutrons
17.
Rev Sci Instrum ; 83(4): 045108, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559577

RESUMO

A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300-473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can be used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO(2) in contact with quartz and Si/SiO(2) wafers are also shown.

18.
Langmuir ; 28(11): 5070-8, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22369098

RESUMO

The densities of pore-confined fluids were measured for the first time by means of vibrating tube densimetry (VTD). A custom-built high-pressure, high-temperature vibrating tube densimeter was used to measure the densities of propane at subcritical and supercritical temperatures (between 35 and 97 °C) and carbon dioxide at supercritical temperatures (between 32 and 50 °C) saturating hydrophobic silica aerogel (0.2 g/cm(3), 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, supercritical isotherms of excess adsorption for CO(2) and the same porous solid were measured gravimetrically using a precise magnetically coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum and then decreased toward zero or negative values above the critical density of the bulk fluid. The isotherms of confined fluid density and excess adsorption obtained by VTD contain additional information. For instance, the maxima of excess adsorption occur below the critical density of the bulk fluid at the beginning of the plateau region in the total adsorption, marking the end of the transition of pore fluid to a denser, liquidlike pore phase. Compression of the confined fluid significantly beyond the density of the bulk fluid at the same temperature was observed even at subcritical temperatures. The effect of pore confinement on the liquid-vapor critical temperature of propane was less than ~1.7 K. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. Good quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Thus, it is demonstrated that vibrating tube densimetry is a novel experimental approach capable of providing directly the average density of pore-confined fluids, and hence complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess).

19.
J Chem Phys ; 122(24): 244718, 2005 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16035804

RESUMO

The mesoscopic structure of the binary system isobutyric acid + heavy water (D(2)O) confined in a porous glass (controlled-pore silica glass, mean pore width ca. 10 nm) was studied by small-angle neutron scattering at off-critical compositions in a temperature range above and below the upper critical solution point. The scattering data were analyzed in terms of a structure factor model similar to that proposed by Formisano and Teixeira [Eur. Phys. J. E 1, 1 (2000)], but allowing for both Ornstein-Zernike-type composition fluctuations and domainlike structures in the microphase-separated state of the pore liquid. The results indicate that the phase separation in the pores is shifted by ca. 10 K and spread out in temperature. Microphase separation is pictured as a transition from partial segregation at high temperature, due to the strong preferential adsorption of water at the pore wall, to a tube or capsule configuration of the two phases at low temperatures, depending on the overall composition of the pore liquid. Results for samples in which the composition of the pore liquid can vary with temperature due to equilibration with extra-pore liquid are consistent with this picture.

20.
J Chem Phys ; 122(12): 124510, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15836400

RESUMO

We investigate the phase behavior of an asymmetric binary liquid A-W mixture confined between two planar homogenous substrates (slit pore). Molecules of species W interact preferentially with the solid walls via a long-range potential. Assuming nearest-neighbor attractions between the liquid molecules, we employ a lattice-gas model and a mean-field approximation for the grand potential. Minimization of this potential yields the density profiles of thermodynamically stable phases for fixed temperature, chemical potentials of both species, pore width and strengths of attraction. This model is used to analyze experimental small-angle neutron-scattering (SANS) data on the microscopic structure of the binary system isobutyric acid (iBA)+heavy water (D2O) inside a mesoscopic porous matrix (controlled-pore glass of about 10 nm mean pore width). Confinement-independent model parameters are adjusted so that the theoretical liquid-liquid coexistence curve in the bulk matches its experimental counterpart. By choosing appropriate values of the pore width and the attraction strength between substrates and water we analyze the effect of confinement on the phase diagram. In addition to a depression of the liquid-liquid critical point we observe surface induced phase transitions as well as water-film adsorption near the walls. The temperature dependence of the structure of water-rich and iBA-rich phases of constant composition are discussed in detail. The theoretical predictions are consistent with results of the SANS study and assist their interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...