Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417294

RESUMO

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Resistência à Doença/imunologia , Proteínas NLR/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Receptores Imunológicos/metabolismo , Nicotiana/imunologia , Nicotiana/parasitologia
2.
Front Cell Dev Biol ; 8: 695, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850816

RESUMO

Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.

3.
Sci Rep ; 10(1): 13016, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747668

RESUMO

Ischemic heart disease remains the foremost cause of death globally, with survivors at risk for subsequent heart failure. Paradoxically, cell therapies to offset cardiomyocyte loss after ischemic injury improve long-term cardiac function despite a lack of durable engraftment. An evolving consensus, inferred preponderantly from non-human models, is that transplanted cells benefit the heart via early paracrine signals. Here, we tested the impact of paracrine signals on human cardiomyocytes, using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as the target of mouse and human cardiac mesenchymal stromal cells (cMSC) with progenitor-like features. In co-culture and conditioned medium studies, cMSCs markedly inhibited human cardiomyocyte death. Little or no protection was conferred by mouse tail tip or human skin fibroblasts. Consistent with the results of transcriptomic profiling, functional analyses showed that the cMSC secretome suppressed apoptosis and preserved cardiac mitochondrial transmembrane potential. Protection was independent of exosomes under the conditions tested. In mice, injecting cMSC-conditioned media into the infarct border zone reduced apoptotic cardiomyocytes > 70% locally. Thus, hPSC-CMs provide an auspicious, relevant human platform to investigate extracellular signals for cardiac muscle survival, substantiating human cardioprotection by cMSCs, and suggesting the cMSC secretome or its components as potential cell-free therapeutic products.


Assuntos
Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Células Estromais/citologia , Animais , Técnicas de Cocultura , Meios de Cultivo Condicionados , Humanos , Camundongos
4.
Nat Metab ; 1(6): 615-629, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32694805

RESUMO

Pancreatic ß-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader ß-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected 'hub' cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory ß-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.


Assuntos
Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Glucose/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
5.
Sci Rep ; 7(1): 5188, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701763

RESUMO

Several pathologic conditions of the heart lead to cardiac structural remodelling. Given the high density and the opaque nature of the myocardium, deep three dimensional (3D) imaging is difficult to achieve and structural analysis of pathological myocardial structure is often limited to two dimensional images and of thin myocardial sections. Efficient methods to obtain optical clearing of the tissue for 3D visualisation are therefore needed. Here we describe a rapid, simple and versatile Free-of-Acrylamide SDS-based Tissue Clearing (FASTClear) protocol specifically designed for cardiac tissue. With this method 3D information regarding collagen content, collagen localization and distribution could be easily obtained across a whole 300 µm-thick myocardial slice. FASTClear does not induce structural or microstructural distortion and it can be combined with immunostaining to identify the micro- and macrovascular networks. In summary, we have obtained decolorized myocardial tissue suitable for high resolution 3D imaging, with implications for the study of complex cardiac tissue structure and its changes during pathology.


Assuntos
Imageamento Tridimensional , Miocárdio/metabolismo , Biópsia , Colágeno/metabolismo , Vasos Coronários , Humanos , Imuno-Histoquímica , Microscopia Confocal , Miocárdio/citologia
6.
Nat Commun ; 8: 13930, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128200

RESUMO

Inflammation is recognized as one of the drivers of cancer. Yet, the individual immune components that possess pro- and anti-tumorigenic functions in individual cancers remain largely unknown. NKG2D is a potent activating immunoreceptor that has emerged as an important player in inflammatory disorders besides its well-established function as tumour suppressor. Here, we provide genetic evidence of an unexpected tumour-promoting effect of NKG2D in a model of inflammation-driven liver cancer. Compared to NKG2D-deficient mice, NKG2D-sufficient mice display accelerated tumour growth associated with, an increased recruitment of memory CD8+T cells to the liver and exacerbated pro-inflammatory milieu. In addition, we show that NKG2D contributes to liver damage and consequent hepatocyte proliferation known to favour tumorigenesis. Thus, the NKG2D/NKG2D-ligand pathway provides an additional mechanism linking chronic inflammation to tumour development in hepatocellular carcinoma. Our findings expose the need to selectively target the types of cancer that could benefit from NKG2D-based immunotherapy.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Progressão da Doença , Hepatócitos/imunologia , Hepatócitos/patologia , Humanos , Imunoterapia/métodos , Ligantes , Fígado/citologia , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/imunologia , Masculino , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
7.
Sci Signal ; 6(285): ra62, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23882121

RESUMO

Natural killer (NK) cell responses are regulated by a dynamic equilibrium between activating and inhibitory receptor signals at the immune synapse (or interface) with target cells. Although the organization of receptors at the immune synapse is important for appropriate integration of these signals, there is little understanding of this in detail, because research has been hampered by the limited resolution of light microscopy. Through the use of superresolution single-molecule fluorescence microscopy to reveal the organization of the NK cell surface at the single-protein level, we report that the inhibitory receptor KIR2DL1 is organized in nanometer-scale clusters at the surface of human resting NK cells. Nanoclusters of KIR2DL1 became smaller and denser upon engagement of the activating receptor NKG2D, establishing an unexpected crosstalk between activating receptor signals and the positioning of inhibitory receptors. These rearrangements in the nanoscale organization of surface NK cell receptors were dependent on the actin cytoskeleton. Together, these data establish that NK cell activation involves a nanometer-scale reorganization of surface receptors, which in turn affects models for signal integration and thresholds that control NK cell effector functions and NK cell development.


Assuntos
Células Matadoras Naturais/citologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores KIR2DL1/metabolismo , Actinas/química , Anticorpos Monoclonais/química , Antígenos CD28/química , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Antígenos HLA/química , Humanos , Sistema Imunitário , Células Matadoras Naturais/ultraestrutura , Microscopia Confocal , Microscopia de Fluorescência , Plasmídeos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...