Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(5)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37754191

RESUMO

From insects to arachnids to bacteria, the surfaces of lakes and ponds are teaming with life. Many modes of locomotion are employed by these organisms to navigate along the air-water interface, including the use of lipid-laden excretions that can locally change the surface tension of the water and induce a Marangoni flow. In this paper, we improved the speed and maneuverability of a miniature remote-controlled robot that mimics insect locomotion using an onboard tank of isopropyl alcohol and a series of servomotors to control both the rate and location of alcohol release to both propel and steer the robot across the water. Here, we studied the effect of a series of design changes to the foam rubber footpads, which float the robot and are integral in efficiently converting the alcohol-induced surface tension gradients into propulsive forces and effective maneuvering. Two designs were studied: a two-footpad design and a single-footpad design. In the case of two footpads, the gap between the two footpads was varied to investigate its impact on straight-line speed, propulsion efficiency, and maneuverability. An optimal design was found with a small but finite gap between the two pads of 7.5 mm. In the second design, a single footpad without a central gap was studied. This footpad had a rectangular cut-out in the rear to capture the alcohol. Footpads with wider and shallower cut-outs were found to optimize efficiency. This observation was reinforced by the predictions of a simple theoretical mechanical model. Overall, the optimized single-footpad robot outperformed the two-footpad robot, producing a 30% improvement in speed and a 400% improvement in maneuverability.

2.
Lab Chip ; 22(1): 156-169, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34881383

RESUMO

Wearable sweat biosensors offer compelling opportunities for improved personal health monitoring and non-invasive measurements of key biomarkers. Inexpensive device fabrication methods are necessary for scalable manufacturing of portable, disposable, and flexible sweat sensors. Furthermore, real-time sweat assessment must be analyzed to validate measurement reliability at various sweating rates. Here, we demonstrate a "smart bandage" microfluidic platform for cortisol detection and continuous glucose monitoring integrated with a synthetic skin. The low-cost, laser-cut microfluidic device is composed of an adhesive-based microchannel and solution-processed electrochemical sensors fabricated from inkjet-printed graphene and silver solutions. An antibody-derived cortisol sensor achieved a limit of detection of 10 pM and included a low-voltage electrowetting valve, validating the microfluidic sensor design under typical physiological conditions. To understand effects of perspiration rate on sensor performance, a synthetic skin was developed using soft lithography to mimic human sweat pores and sweating rates. The enzymatic glucose sensor exhibited a range of 0.2 to 1.0 mM, a limit of detection of 10 µM, and reproducible response curves at flow rates of 2.0 µL min-1 and higher when integrated with the synthetic skin, validating its relevance for human health monitoring. These results demonstrate the potential of using printed microfluidic sweat sensors as a low-cost, real-time, multi-diagnostic device for human health monitoring.


Assuntos
Técnicas Biossensoriais , Suor , Glicemia , Automonitorização da Glicemia , Glucose , Humanos , Hidrocortisona , Microfluídica , Reprodutibilidade dos Testes , Sudorese
3.
Sci Rep ; 11(1): 19636, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608187

RESUMO

Drop-wise condensation (DWC) has been the focus of scientific research in vapor condensation technologies since the 20th century. Improvement of condensation rate in DWC is limited by the maximum droplet a condensation surface could sustain and the frequency of droplet shedding. Furthermore, The presence of non-condensable gases (NCG) reduces the condensation rate significantly. Here, we present continuous drop-wise condensation to overcome the need of hydrophobic surfaces while yet maintaining micron-sized droplets. By shifting focus from surface treatment to the force required to sweep off a droplet, we were able to utilize stagnation pressure of jet impingement to tune the shed droplet size. The results show that droplet size being shed can be tuned effectively by tuning the jet parameters. our experimental observations showed that the effect of NCG is greatly alleviated by utilizing this technique. An improvement by multiple folds in mass transfer compactness factor compared to state-of-the-art dehumidification technology was possible.

4.
ACS Appl Mater Interfaces ; 13(42): 50358-50367, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34648279

RESUMO

We designed and synthesized epoxy-encapsulated microparticles with core-shell structures via suspension polymerization to enable high-efficiency, room-temperature cold spray processing. The soft core of the microparticles was comprised of a thermoset resin, diglycidyl ether of bisphenol A (DGEBA), which was optionally blended with the thermoplastic, poly(butyl acrylate); the protective shell was formed using polyurea. The composition, morphology, and thermal behavior of the microparticles were investigated. An inverse relationship between deposition efficiency and particle size was demonstrated by varying the surfactant concentration that was used during particle synthesis. We also determined that the microparticles that had pure resin as the core had the lowest viscosity, exhibited a decrease in the critical impact velocity required for adhesion, had the best flowability, and yielded a dramatic increase in deposition efficiency (56%). We have demonstrated that our in-house synthesized particles can form homogeneous, smooth, and fully coalesced coatings using room-temperature cold spray.

5.
Bioinspir Biomim ; 16(6)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500437

RESUMO

Inspired by creatures that have naturally mastered locomotion on the air-water interface, we developed and built a self-powered, remotely controlled surfing robot capable of traversing this boundary by harnessing surface tension modification for both propulsion and steering through a controlled release of isopropyl alcohol. In this process, we devised and implemented novel release valve and steering mechanisms culminating in a surfer with distinct capabilities. Our robot measures about 110 mm in length and can travel as fast as 0.8 body length per second. Interestingly, we found that the linear speed of the robot follows a 1/3 power law with the release rate of the propellant. Additional maneuverability tests also revealed that the robot is able to withstand 20 mm s-2in centripetal acceleration while turning. Here, we thoroughly discuss the design, development, performance, overall capabilities, and ultimate limitations of our robotic surfer.


Assuntos
Robótica , Desenho de Equipamento , Locomoção
6.
Soft Matter ; 16(5): 1227-1235, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31904053

RESUMO

The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined microfluidic geometry. Cantilevered beams with varying length and flexibility were studied. With increasing flow rate and Weissenberg number, the flow transitioned from a fore-aft symmetric flow to a stable detached vortex upstream of the beam, to a time-dependent unstable vortex shedding. The shedding of the unstable vortex upstream of the beam imposed a time-dependent drag force on the cantilevered beam resulting in flow-induced beam oscillations. The oscillations of the flexible beam were classified into two distinct regimes: a regime with a clear single vortex shedding from upstream of the beam resulting in a sinusoidal beam oscillation pattern with the frequency of oscillation increasing monotonically with Weissenberg number, and a regime at high Weissenberg numbers characterized by 3D viscoelastic instabilities where the frequency of oscillations plateaued. The critical onset of the flow transitions, the mechanism of vortex shedding and the dynamics of the cantilevered beam response are presented in detail here as a function of beam flexibility and flow viscoelasticity.

7.
Soft Matter ; 15(5): 833-841, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30488939

RESUMO

The linear and nonlinear rheological behavior of two rod-like particle suspensions as a function of concentration is studied using small amplitude oscillatory shear, steady shear and capillary breakup extensional rheometry. The rod-like suspensions are composed of fd virus and its mutant fdY21M, which are perfectly monodisperse, with a length on the order of 900 nm. The particles are semiflexible yet differ in their persistence length. The effect of stiffness on the rheological behavior in both, shear and extensional flow, is investigated experimentally. The linear viscoelastic shear data is compared in detail with theoretical predictions for worm-like chains. The extensional properties are compared to Batchelor's theory, generalized for the shear thinning nature of the suspensions. Theoretical predictions agree well with the measured complex moduli at low concentrations as well as the nonlinear shear and elongational viscosities at high flow rates. The results in this work provide guidelines for enhancing the elongational viscosity based on purely frictional effects in the absence of strong normal forces which are characteristic for high molecular weight polymers.

8.
J Colloid Interface Sci ; 513: 658-665, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29207348

RESUMO

Rough hydrophobic surfaces have many applications in industry and technology. An experimental study was done on the spreading dynamics of different concentrations of polyethylene glycol (PEG) solutions on rough Teflon plates with different roughness. The experiments were conducted using Wilhelmy plate method. The advancing dynamic contact angle was found to be weakly dependent of capillary number. However, the receding dynamic contact angle decreases with increasing capillary number. The degree of roughness on rough Teflon surface has an important role on dynamic contact angle. The dynamics of receding motion was found to follow the molecular-kinetic theory. A power law relation between the receding dynamic contact angle and the capillary number was also obtained.

10.
Langmuir ; 32(40): 10166-10176, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27622306

RESUMO

In this study, the spreading and retraction dynamics of impacting droplets on lubricant-infused PTFE surfaces were investigated through high-speed imagery. Superhydrophobic Polytetrafluoroethylene (PTFE) surfaces with randomly rough microstructures were prepared by sanding PTFE. Several silicone oils with different viscosities were infused into the structures of superhydrophobic PTFE surfaces. A glycerin and water solution was used for the impacting droplets. The viscosity ratio between the impinging droplet and infused oil layer was varied from 0.06 to 1.2. The droplet impact dynamics on lubricant-infused surfaces were found to change as the viscosity of the infused silicone oil layer was decreased. These changes included an increase in the spreading rate of the droplet following impact, an increase to the maximum spreading diameter, and an increase to the retraction velocity after the droplet reached its maximum diameter. These variations in the impact dynamics were most significant as the viscosity ratio became larger than one and are likely due to the reduction of viscous losses between the oil and water phases during the spreading and retraction of the impacting droplet. Using a scaling analysis which takes into account the role of energy dissipation in the impact dynamics, all the data for the maximum diameter of the droplet on lubricant-infused PTFE surfaces were found to collapse onto a single master curve. Finally, measurements of the dynamic advancing and receding contact angle were made during spreading and retraction of the droplet. These measurements showed the expected Cox-Voinov-Tanner scaling of contact angle for the high oil viscosity, low viscosity ratio lubricant infused surfaces. However, like the superhydrophobic surface, little changes in either the dynamic advancing or receding contact angle were observed for droplets spreading on the surface infused with the lowest viscosity oil.

11.
ACS Nano ; 10(5): 5027-40, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27070851

RESUMO

The type I collagen monomer is one of nature's most exquisite and prevalent structural tools. Its 300 nm triple-helical motifs assemble into tough extracellular fibers that transition seamlessly across tissue boundaries and exceed cell dimensions by up to 4 orders of magnitude. In spite of extensive investigation, no existing model satisfactorily explains how such continuous structures are generated and grown precisely where they are needed (aligned in the path of force) by discrete, microscale cells using materials with nanoscale dimensions. We present a simple fiber drawing experiment, which demonstrates that slightly concentrated type I collagen monomers can be "flow-crystallized" to form highly oriented, continuous, hierarchical fibers at cell-achievable strain rates (<1 s(-1)) and physiologically relevant concentrations (∼50 µM). We also show that application of tension following the drawing process maintains the structural integrity of the fibers. While mechanical tension has been shown to be a critical factor driving collagen fibril formation during tissue morphogenesis in developing animals, the precise role of force in the process of building tissue is not well understood. Our data directly couple mechanical tension, specifically the extensional strain rate, to collagen fibril assembly. We further derive a "growth equation" which predicts that application of extensional strains, either globally by developing muscles or locally by fibroblasts, can rapidly drive the fusion of already formed short fibrils to produce long-range, continuous fibers. The results provide a pathway to scalable connective tissue manufacturing and support a mechano-biological model of collagen fibril deposition and growth in vivo.


Assuntos
Colágeno Tipo I/química , Colágeno/química , Cristalização , Animais , Matriz Extracelular , Estresse Mecânico , Engenharia Tecidual
12.
J Phys Condens Matter ; 28(2): 025101, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26658075

RESUMO

In this paper, we investigate the buckling of an air-water interface populated by lycopodium powder particles using a specially designed Langmuir trough with side walls that deformed affinely with the particle-laden interface in order to minimize the effect of shear during compression. Confinement effects from the side walls were studied by systematically reducing the width of the Langmuir trough and measuring the buckling wavelength. For interfaces wider than 20 mm, the bulk wavelength was found to be independent of interface width. Due to the presence of contact line friction along the sidewall, the amplitude and wavelength of the wrinkles near the side walls were found to be reduced by a factor two compared with the bulk. A cascade in wavelength was observed as one moved from the center of the particle-laden interface towards the sidewalls similar to what has been observed for thin floating polymer films. For interface widths less than 20 mm, the wavelength of the wrinkles in the bulk was found to decrease eventually approaching the wavelength measured along the side walls. The wavelength at the walls was not affected by confinement. At large compressive strains, a transition from wrinkles to folds was observed. These regions of strain localization formed as a train of folds shortly after the onset of wrinkling and grew in amplitude with increasing compression. Confinement was also found to have an impact on folding. To study the impact of shear during interface compression, a series of objects including circular cylinders and rectangular prisms were placed through the center of the particle-laden interface before compression. These objects enhanced wrinkling and folding upstream of the object, eliminated wrinkling and folding in a broad region downstream of the object, and realigned the wrinkles along the side of the immobile obstacles where shear strains were maximum.

13.
Sci Rep ; 5: 11238, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26057818

RESUMO

The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.


Assuntos
Celulose/química , Cristalização , Temperatura Alta
14.
J Colloid Interface Sci ; 448: 287-96, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746181

RESUMO

In this paper, we investigate the buckling of an oil-water interface populated by micron-sized latex particles using a Langmuir trough. In this work, we extend results of buckling of particle-laden interfaces from the millimeter down to the submicron range while investigating the effect of a different capillary length on the resulting wavelength. The experimental data is compared to the existing theoretical framework. An unexpected deviation from the prediction of theory of the dominant wavelength of buckling is observed for particles smaller than one micron. Those observations suggest that there is a transition to a new buckling regime involving the formation of trilayers below one micron. For the first time in particle rafts, cascading of the dominant wavelength similar to that observed in thin polymer films is reported. In addition a series of transitions between wavelengths not observed in thin films is observed within the same particle raft. Lastly, the effect of compression history on the macroscopic arrangement of particles is investigated, along with its effect on the buckling wavelength.

15.
Artigo em Inglês | MEDLINE | ID: mdl-25353578

RESUMO

In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.

16.
Nanotechnology ; 24(50): 505307, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24284380

RESUMO

Successful implementation of a high-speed roll-to-roll nanoimprinting technique for continuous manufacturing of electronic devices has been hindered due to lack of simple substrate preparation steps, as well as lack of durable and long lasting molds that can faithfully replicate nanofeatures with high fidelity over hundreds of imprinting cycles. In this work, we demonstrate large-area high-speed continuous roll-to-roll nanoimprinting of 1D and 2D micron to sub-100 nm features on flexible substrate using perfluoropolyether (PFPE) composite molds on a custom designed roll-to-roll nanoimprinter. The efficiency and reliability of the PFPE based mold for the dynamic roll-to-roll patterning process was investigated. The PFPE composite mold replicated nanofeatures with high fidelity and maintained superb mold performance in terms of dimensional integrity of the nanofeatures, nearly defect free pattern transfer and exceptional mold recovering capability throughout hundreds of imprinting cycles.

17.
J Colloid Interface Sci ; 404: 169-78, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23726385

RESUMO

One-way wicking (microfluidic diode) behaviors of a range of IPA-water mixtures on internally structured PDMS-based open micro-channels were experimentally demonstrated and quantified. The open microfluidic channels, each internally decorated with an array of angled fin-like-structure pairs, were fabricated using a combined photolithography and soft molding procedure. Propagations of wetting fluids were found to be much more impeded on the fin-tilting direction, or the hard wicking direction, comparing to the opposite direction, or the easy wicking direction. This asymmetric wicking behaviors were attributed to the structure-induced direction-dependent Laplace pressure. Two key parameters - the contact angle of the wicking fluid and the tilting angle of the fin-like structures - were studied. The effects of preferential evaporation and wetting instability were also investigated. The findings of this study are expected to provide a better understanding of how fluids interact with micro-scaled structures and to offer a new way of manipulating fluids at the micron and nanometer scales.


Assuntos
Técnicas Analíticas Microfluídicas , Pressão , Reologia/métodos , Reologia/instrumentação
18.
J Colloid Interface Sci ; 363(2): 646-54, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21855081

RESUMO

In this work, droplet coalescence and the subsequent mixing in superhydrophobic surfaces is studied over a range of impact velocities and impact angles. Sanded Teflon surfaces are used as a novel two-dimensional microfluidics platform. These superhydrophobic surfaces exhibit a constant advancing contact angle of θ(A)=150° over a broad range of contact angle hysteresis. As a result, the effect of contact angle hysteresis on droplet coalescence and mixing can be studied. Based on the observed characteristics of coalescence, three different regimes of coalescence are identified as a function of both Weber number and impact angle. These regimes include oscillation dominated, rotation dominated, and mixed dynamics. It is shown that within Weber number ranges achievable in this experiment, hysteresis greatly reduces the deformation of the droplet coalescence process and the subsequent mixing. In head-on collisions, higher hysteresis is found to decrease the frequency at which the resulting dr oscillates. In the case of glancing collisions, where the resulting droplet is found to rotate, higher hysteresis increases the rate of rotation although the overall angular momentum is found to be independent of contact angle hysteresis.

19.
Langmuir ; 27(16): 9760-8, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21732665

RESUMO

Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 µm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 µm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.


Assuntos
Microfluídica/métodos , Nanopartículas/química , Técnicas Analíticas Microfluídicas , Propriedades de Superfície , Tensoativos/química
20.
J Colloid Interface Sci ; 354(1): 386-95, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21144535

RESUMO

High aspect ratio three-dimensional nanostructures are of tremendous interest to a wide range of fields such as photonics, plasmonics, fluid mechanics, and biology. Recent developments in capillary force lithography (CFL) have focused on taking advantage of the formation of menisci to enhance the functionality of small size-scale structures. In this study, simulations of the three-dimensional shapes of equilibrium menisci formed in capillaries with various cross-section geometries are studied. The capillary cross sections include regular polygons and equilateral star-shapes with sharp and rounded corners. The characteristic dimension of the physical lithography systems which are simulated is on the order of 100nm. At such size-scale, surface-tension-effects are predominant, and as a consequence, our simulations demonstrate that nanometer-sized structures with great application potentials can be fabricated. Specifically, this study demonstrates that surfaces with three-dimensional nanoscale structures can be fabricated from templates with micron or sub-micron features through the development of cusps in the corners of the polygonal capillaries. Quantitatively, the effects of contact angle, corner angle, meniscus confinement, and corner rounding radius are examined and scaling analyses are presented to describe the dependencies of the height variation across the meniscus on these parameters. These simulations serve as useful guides for extending the development and implementation of capillary force lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...