Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 116(6): 1667-1680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682777

RESUMO

Eggplant (Solanum melongena) is an important Solanaceous crop, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. Its domestication centers and migration and diversification routes are still a matter of debate. We report the largest georeferenced and genotyped collection to this date for eggplant and its wild relatives, consisting of 3499 accessions from seven worldwide genebanks, originating from 105 countries in five continents. The combination of genotypic and passport data points to the existence of at least two main centers of domestication, in Southeast Asia and the Indian subcontinent, with limited genetic exchange between them. The wild and weedy eggplant ancestor S. insanum shows admixture with domesticated S. melongena, similar to what was described for other fruit-bearing Solanaceous crops such as tomato and pepper and their wild ancestors. After domestication, migration and admixture of eggplant populations from different regions have been less conspicuous with respect to tomato and pepper, thus better preserving 'local' phenotypic characteristics. The data allowed the identification of misclassified and putatively duplicated accessions, facilitating genebank management. All the genetic, phenotypic, and passport data have been deposited in the Open Access G2P-SOL database, and constitute an invaluable resource for understanding the domestication, migration and diversification of this cosmopolitan vegetable.


Assuntos
Solanum lycopersicum , Solanum melongena , Solanum melongena/genética , Domesticação , Frutas/genética , Ásia
2.
Sci Rep ; 13(1): 12288, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516733

RESUMO

Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.


Assuntos
Calosidades , Cynara scolymus , Scolymus , Cynara scolymus/genética , Filogenia , Catecol Oxidase/genética , Fenóis , Polifenóis
3.
Front Plant Sci ; 14: 1187663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476175

RESUMO

The Asparagus genus includes approximately 240 species, the most important of which is garden asparagus (Asparagus officinalis L.), as this is a vegetable crop cultivated worldwide for its edible spear. Along with garden asparagus, other species are also cultivated (e.g., Asparagus maritimus L.) or have been proposed as untapped sources of variability in breeding programs (e.g., Asparagus acutifolius L.). In the present work, we applied reduced-representation sequencing to examine a panel of 378 diverse asparagus genotypes, including commercial hybrids, interspecific lines, wild relatives of garden asparagus, and doubled haploids currently used in breeding programs, which enabled the identification of more than 200K single-nucleotide polymorphisms (SNPs). These SNPs were used to assess the extent of linkage disequilibrium in the diploid gene pool of asparagus and combined with preliminary phenotypic information to conduct genome-wide association studies for sex and traits tied to spear quality and production. Moreover, using the same phenotypic and genotypic information, we fitted and cross-validated genome-enabled prediction models for the same set of traits. Overall, our analyses demonstrated that, unlike the diversity detected in wild species related to garden asparagus and in interspecific crosses, cultivated and wild genotypes of A. officinalis L. show a narrow genetic basis, which is a contributing factor hampering the genetic improvement of this crop. Estimating the extent of linkage disequilibrium and providing the first example of genome-wide association study and genome-enabled prediction in this species, we concluded that the asparagus panel examined in the present study can lay the foundation for determination of the genetic bases of agronomically important traits and for the implementation of predictive breeding tools to sustain breeding.

4.
J Exp Bot ; 74(20): 6285-6305, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37419672

RESUMO

Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.


Assuntos
Solanum melongena , Solanum , Solanum melongena/genética , Melhoramento Vegetal , Solanum/genética , Fenótipo
5.
Cells ; 11(16)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010625

RESUMO

Eggplant (Solanum melongena L.), similar to many other crops, suffers from soil-borne diseases, including Fusarium oxysporum f. sp. melongenae (Fom), causing wilting and heavy yield loss. To date, the genetic factors underlying plant responses to Fom are not well known. We previously developed a Recombinant Inbred Lines (RILs) population using as a female parent the fully resistant line '305E40' and as a male parent the partially resistant line '67/3'. The fully resistant trait to Fom was introgressed from the allied species S. aethiopicum. In this work, the RIL population was assessed for the responses to Fom and by using a genomic mapping approach, two major QTLs on chromosomes CH02 and CH11 were identified, associated with the full and partial resistance trait to Fom, respectively. A targeted BSAseq procedure in which Illumina reads bulks of RILs grouped according to their resistance score was aligned to the appropriate reference genomes highlighted differentially enriched regions between resistant/susceptible progeny in the genomic regions underlying both QTLs. The characterization of such regions allowed us to identify the most reliable candidate genes for the two resistance traits. With the aim of revealing exclusive species-specific contigs and scaffolds inherited from the allied species and thus associated with the full resistance trait, a draft de-novo assembly of available Illumina sequences of the '305E40' parent was developed to better resolve the non-recombining genomic region on its CH02 carrying the introgressed Fom resistance locus from S. aethiopicum.


Assuntos
Fusarium , Solanum melongena , Fusarium/genética , Genômica , Doenças das Plantas/genética , Solanum melongena/genética
6.
Plants (Basel) ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35270170

RESUMO

Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30-40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant.

7.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502081

RESUMO

Eggplant berries are rich in anthocyanins like delphinidin-3-rutinoside (D3R) and nasunin (NAS), which are accumulated at high amounts in the peel. NAS is derived by D3R through acylation and glycosylation steps. The presence of D3R or NAS is usually associated with black-purple or lilac fruit coloration of the most cultivated varieties, respectively. Building on QTL mapping position, a candidate gene approach was used to investigate the involvement of a BAHD anthocyanin acyltransferase (SmelAAT) in determining anthocyanin type. The cDNA sequence comparison revealed the presence of a single-base deletion in D3R-type line '305E40' (305E40_aat) with respect to the NAS-type reference line '67/3'. This is predicted to cause a frame shift mutation, leading to a loss of SmelAAT function and, thus, D3R retention. RT-qPCR analyses confirmed SmelAAT and 305E40_aat expression during berry maturation. In D3R-type lines, '305E40' and 'DR2', overexpressing the functional SmelAAT allele from '67/3', the transcript levels of the transgene correlated with the accumulation of NAS in fruit peel. Furthermore, it was also found a higher expression of the transcript for glucosyltransferase Smel5GT1, putatively involved with SmelAAT in the last steps of anthocyanin decoration. Finally, an indel marker matching with anthocyanin type in the '305E40' × '67/3' segregating population was developed and validated in a wide number of accessions, proving its usefulness for breeding purposes.


Assuntos
Aciltransferases/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Solanum melongena/genética , Aciltransferases/metabolismo , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Mutação , Pigmentação , Proteínas de Plantas/metabolismo , Solanum melongena/metabolismo
8.
Front Plant Sci ; 12: 638195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079565

RESUMO

Eggplant (Solanum melongena L.) represents the third most important crop of the Solanaceae family and is an important component of our daily diet. A population of 164 F6 recombinant inbred lines (RILs), derived from two eggplant lines differing with respect to several key agronomic traits, "305E40" and "67/3," was grown to the commercial maturation stage, and fruits were harvested, separated into peel and flesh, and subjected to liquid chromatography Liquid Chromatography/Mass Spectrometry (LC/MS) analysis. Through a combination of untargeted and targeted metabolomics approaches, a number of metabolites belonging to the glycoalkaloid, anthocyanin, and polyamine classes and showing a differential accumulation in the two parental lines and F1 hybrid were identified. Through metabolic profiling of the RILs, we identified several metabolomic quantitative trait loci (mQTLs) associated with the accumulation of those metabolites. Each of the metabolic traits proved to be controlled by one or more quantitative trait loci (QTLs); for most of the traits, one major mQTL (phenotypic variation explained [PVE] ≥ 10%) was identified. Data on mQTL mapping and dominance-recessivity relationships of measured compounds in the parental lines and F1 hybrid, as well as an analysis of the candidate genes underlying the QTLs and of their sequence differences in the two parental lines, suggested a series of candidate genes underlying the traits under study.

9.
Plant J ; 107(2): 579-596, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964091

RESUMO

Eggplant (Solanum melongena L.) is an important horticultural crop and one of the most widely grown vegetables from the Solanaceae family. It was domesticated from a wild, prickly progenitor carrying small, round, non-anthocyanic fruits. We obtained a novel, highly contiguous genome assembly of the eggplant '67/3' reference line, by Hi-C retrofitting of a previously released short read- and optical mapping-based assembly. The sizes of the 12 chromosomes and the fraction of anchored genes in the improved assembly were comparable to those of a chromosome-level assembly. We resequenced 23 accessions of S. melongena representative of the worldwide phenotypic, geographic, and genetic diversity of the species, and one each from the closely related species Solanum insanum and Solanum incanum. The eggplant pan-genome contained approximately 51.5 additional megabases and 816 additional genes compared with the reference genome, while the pan-plastome showed little genetic variation. We identified 53 selective sweeps related to fruit color, prickliness, and fruit shape in the nuclear genome, highlighting selection leading to the emergence of present-day S. melongena cultivars from its wild ancestors. Candidate genes underlying the selective sweeps included a MYBL1 repressor and CHALCONE ISOMERASE (for fruit color), homologs of Arabidopsis GLABRA1 and GLABROUS INFLORESCENCE STEMS2 (for prickliness), and orthologs of tomato FW2.2, OVATE, LOCULE NUMBER/WUSCHEL, SUPPRESSOR OF OVATE, and CELL SIZE REGULATOR (for fruit size/shape), further suggesting that selection for the latter trait relied on a common set of orthologous genes in tomato and eggplant.


Assuntos
Domesticação , Genoma de Planta/genética , Melhoramento Vegetal , Solanum melongena/genética , Mapeamento Cromossômico , Genes de Plantas/genética , Variação Genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Solanum melongena/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
10.
Front Plant Sci ; 12: 639336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841466

RESUMO

Seed priming can circumvent poor germination rate and uniformity, frequently reported in eggplant (Solanum melongena L.) and its crop wild relatives (CWRs). However, there is still a gap of knowledge on how these treatments impact the pre-germinative metabolism in a genotype- and/or species-dependent manner. The CWR Solanum villosum Miller (hairy nightshade) investigated in this study showed a quite unique profile of fast germination. Although this accelerated germination profile would not apparently require further improvement, we wanted to test whether priming would still be able to impact the pre-germinative metabolism, eventually disclosing the predominant contribution of specific antioxidant components. Hydropriming followed by dry-back resulted in synchronized germination, as revealed by the lowest MGR (Mean Germination Rate) and U (Uncertainty) values, compared to unprimed seeds. No significant changes in ROS (reactive oxygen species) were observed throughout the treatment. Increased tocopherols levels were detected at 2 h of hydropriming whereas, overall, a low lipid peroxidation was evidenced by the malondialdehyde (MDA) assay. Hydropriming resulted in enhanced accumulation of the naturally occurring antioxidant phenolic compounds chlorogenic acid and iso-orientin, found in the dry seeds and ex novo accumulation of rutin. The dynamic changes of the pre-germinative metabolism induced by hydropriming are discussed in view of future applications that might boost the use of eggplant CWRs for breeding, upon upgrade mediated by seed technology.

11.
J Exp Bot ; 72(12): 4237-4253, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33711100

RESUMO

Nitrogen-use efficiency (NUE) is a complex trait of great interest in breeding programs because through its improvement, high crop yields can be maintained whilst N supply is reduced. In this study, we report a transcriptomic analysis of four NUE-contrasting eggplant (Solanum melongena) genotypes following short- and long-term exposure to low N, to identify key genes related to NUE in the roots and shoots. The differentially expressed genes in the high-NUE genotypes are involved in the light-harvesting complex and receptor, a ferredoxin-NADP reductase, a catalase and WRKY33. These genes were then used as bait for a co-expression gene network analysis in order to identify genes with the same trends in expression. This showed that up-regulation of WRKY33 triggered higher expression of a cluster of 21 genes and also of other genes, many of which were related to N-metabolism, that were able to improve both nitrogen uptake efficiency and nitrogen utilization efficiency, the two components of NUE. We also conducted an independent de novo experiment to validate the significantly higher expression of WRKY33 and its gene cluster in the high-NUE genotypes. Finally, examination of an Arabidopsis transgenic 35S::AtWRKY33 overexpression line showed that it had a bigger root system and was more efficient at taking up N from the soil, confirming the pivotal role of WRKY33 for NUE improvement.


Assuntos
Nitrogênio , Solanum melongena , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Melhoramento Vegetal , Solanum melongena/genética , Transcriptoma
12.
Plant Direct ; 4(11): e00283, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204936

RESUMO

Flowering and fruiting are processes subject to complex control by environmental and endogenous signals. Endogenous signals comprise, besides classical phytohormones, also signaling peptides and miniproteins. Tomato cystine-knot miniproteins (TCMPs), which belong to a Solanaceous-specific group of Cys-rich protein family, have been recently involved in fruit development. TCMP-1 and TCMP-2 display a highly modulated expression pattern during flower and fruit development. A previous study reported that a change in the ratio of the two TCMPs affects the timing of fruit production. In this work, to investigate TCMP-2 mode of action, we searched for its interacting partners. One of the interactors identified by a yeast two hybrid screen, was the B-box domain-containing protein 16 (SlBBX16), whose closest homolog is the Arabidopsis microProtein 1b implicated in flowering time control. We demonstrated the possibility for the two proteins to interact in vivo in tobacco epidermal cells. Arabidopsis plants ectopically overexpressing the TCMP-2 exhibited an increased level of FLOWERING LOCUS T (FT) mRNA and anticipated flowering. Similarly, in previously generated transgenic tomato plants with increased TCMP-2 expression in flower buds, we observed an augmented expression of SINGLE-FLOWER TRUSS gene, the tomato ortholog of FT, whereas the expression of the antiflorigen SELF-PRUNING was unchanged. Consistently, these transgenic plants showed alterations in the flowering pattern, with an accelerated termination of the sympodial units. Overall, our study reveals a novel function for TCMP-2 as regulatory factor that might integrate, thanks to its capacity to interact with SlBBX16, into the signaling pathways that control flowering, and converge toward florigen regulation.

13.
Genes (Basel) ; 11(7)2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635424

RESUMO

Eggplant is the second most important solanaceous berry-producing crop after tomato. Despite mapping studies based on bi-parental progenies and GWAS approaches having been performed, an eggplant intraspecific high-resolution map is still lacking. We developed a RIL population from the intraspecific cross '305E40', (androgenetic introgressed line carrying the locus Rfo-Sa1 conferring Fusarium resistance) x '67/3' (breeding line whose genome sequence was recently released). One hundred and sixty-three RILs were genotyped by a genotype-by-sequencing (GBS) approach, which allowed us to identify 10,361 polymorphic sites. Overall, 267 Gb of sequencing data were generated and ~773 M Illumina paired end (PE) reads were mapped against the reference sequence. A new linkage map was developed, including 7249 SNPs assigned to the 12 chromosomes and spanning 2169.23 cM, with iaci@liberoan average distance of 0.4 cM between adjacent markers. This was used to elucidate the genetic bases of seven traits related to anthocyanin content in different organs recorded in three locations as well as seed vigor. Overall, from 7 to 17 QTLs (at least one major QTL) were identified for each trait. These results demonstrate that our newly developed map supplies valuable information for QTL fine mapping, candidate gene identification, and the development of molecular markers for marker assisted selection (MAS) of favorable alleles.


Assuntos
Antocianinas/biossíntese , Cromossomos de Plantas/genética , Ligação Genética , Locos de Características Quantitativas , Sementes/genética , Solanum melongena/genética , Antocianinas/genética , Resistência à Doença , Fusarium/patogenicidade , Pigmentação , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Solanum melongena/microbiologia , Solanum melongena/fisiologia
14.
Hortic Res ; 7(1): 87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528699

RESUMO

Seed priming, a pre-sowing technique that enhances the antioxidant/DNA repair activities during the pre-germinative metabolism, still retains empirical features. We explore for the first time the molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds in order to identify hallmarks (expression patterns of antioxidant/DNA repair genes combined with free radical profiles) useful to discriminate between high- and low-quality lots. The hydropriming protocol hereby developed anticipated (or even rescued) germination, when applied to lots with variable quality. ROS (reactive oxygen species) raised during hydropriming and dropped after dry-back. Upregulation of antioxidant/DNA repair genes was observed during hydropriming and the subsequent imbibition. Upregulation of SmOGG1 (8-oxoguanine glycosylase/lyase) gene detected in primed seeds at 2 h of imbibition appeared as a promising hallmark. On the basis of these results, the investigation was restricted within the first 2 h of imbibition, to verify whether the molecular landscape was reproducible in different lots. A complex pattern of antioxidant/DNA repair gene expression emerged, reflecting the preponderance of seed lot-specific profiles. Only the low-quality eggplant seeds subjected to hydropriming showed enhanced ROS levels, both in the dry and imbibed state, and this might be a useful signature to discriminate among lots. The plasticity of eggplant pre-germinative metabolism stimulated by priming imposes a plethora of heterogeneous molecular responses that might delay the search for quality hallmarks. However, the information hereby gained could be translated to eggplant wild relatives to speed-up their use in breeding programs or other agronomical applications.

15.
PLoS One ; 15(5): e0232986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407419

RESUMO

Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model in eggplant, which is pivotal in the transcriptional regulation of the anthocyanin biosynthetic pathway. Through a genome-wide approach performed on the recently released Eggplant Genome (cv. 67/3) previously identified, and reconfirmed by us, members belonging to the MBW complex (SmelANT1, SmelAN2, SmelJAF13, SmelAN1) were functionally characterized. Furthermore, a regulatory R3 MYB type repressor (SmelMYBL1), never reported before, was identified and characterized as well. Through a qPCR approach, we revealed specific transcriptional patterns of candidate genes in different plant tissue/organs at two stages of fruit development. Two strategies were adopted for investigating the interactions of bHLH partners (SmelAN1, SmelJAF13) with MYB counterparts (SmelANT1, SmelAN2 and SmelMYBL1): Yeast Two Hybrid (Y2H) and Bimolecular Fluorescent Complementation (BiFC) in A. thaliana mesophylls protoplast. Agro-infiltration experiments highlighted that N. benthamiana leaves transiently expressing SmelANT1 and SmelAN2 showed an anthocyanin-pigmented phenotype, while their co-expression with SmelMYBL1 prevented anthocyanin accumulation. Our results suggest that SmelMYBL1 may inhibits the MBW complex via the competition with MYB activators for bHLH binding site, although this hypothesis requires further elucidation.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reguladores , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
16.
Front Plant Sci ; 10: 1005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440267

RESUMO

Single primer enrichment technology (SPET) is a new, robust, and customizable solution for targeted genotyping. Unlike genotyping by sequencing (GBS), and like DNA chips, SPET is a targeted genotyping technology, relying on the sequencing of a region flanking a primer. Its reliance on single primers, rather than on primer pairs, greatly simplifies panel design, and allows higher levels of multiplexing than PCR-based genotyping. Thanks to the sequencing of the regions surrounding the target SNP, SPET allows the discovery of thousands of closely linked, novel SNPs. In order to assess the potential of SPET for high-throughput genotyping in plants, a panel comprising 5k target SNPs, designed both on coding regions and introns/UTRs, was developed for tomato and eggplant. Genotyping of two panels composed of 400 tomato and 422 eggplant accessions, comprising both domesticated material and wild relatives, generated a total of 12,002 and 30,731 high confidence SNPs, respectively, which comprised both target and novel SNPs in an approximate ratio of 1:1.6, and 1:5.5 in tomato and eggplant, respectively. The vast majority of the markers was transferrable to related species that diverged up to 3.4 million years ago (Solanum pennellii for tomato and S. macrocarpon for eggplant). Maximum Likelihood phylogenetic trees and PCA outputs obtained from the whole dataset highlighted genetic relationships among accessions and species which were congruent with what was previously reported in literature. Better discrimination among domesticated accessions was achieved by using the target SNPs, while better discrimination among wild species was achieved using the whole SNP dataset. Our results reveal that SPET genotyping is a robust, high-throughput technology for genetic fingerprinting, with a high degree of cross-transferability between crops and their cultivated and wild relatives, and allows identification of duplicates and mislabeled accessions in genebanks.

17.
Sci Rep ; 9(1): 11769, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409808

RESUMO

With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genoma de Planta , Solanum melongena/genética , Etilenos/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , Solanum melongena/metabolismo
19.
Molecules ; 23(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126139

RESUMO

DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins' expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanum melongena/química , Animais , Antocianinas/química , Antocianinas/farmacologia , Linhagem Celular , Células Cultivadas , Quelantes/química , Quelantes/farmacologia , Cromatografia Líquida de Alta Pressão , Citoproteção , Flavonoides/química , Flavonoides/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Replicação Viral/efeitos dos fármacos
20.
Protoplasma ; 254(6): 2215-2223, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28429149

RESUMO

Endogenous housekeeping genes are traditionally employed to normalize the expression of target genes in RT-qPCR studies. Assuming that a perfect housekeeping suitable for every condition does not exist, expression stability of the chosen reference gene should be evaluated at every new experiment. The housekeeping selection process reveals furthermore complicated and time-consuming when different conditions have to be compared in the same experimental dataset. As an alternative strategy, we spiked an external reference transcript (ERT) into all RNA samples of our dataset (eggplant roots subjected to different biotic stresses), and used it to normalize the expression levels of native candidate housekeeping. ERT expression resulted highly stable across all samples and enabled to indicate glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the most stable endogenous housekeeping. This result was confirmed by the use of GeNorm, Normfinder, and BestKeeper algorithms. This method might be generally applied to expedite the selection process of the best reference gene.


Assuntos
Perfilação da Expressão Gênica/normas , Raízes de Plantas/genética , Solanum melongena/genética , Regulação da Expressão Gênica de Plantas , Genes Essenciais , Genes de Plantas , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum melongena/metabolismo , Solanum melongena/microbiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...