Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 23(1): 1788, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710241

RESUMO

BACKGROUND: Influenza virus is responsible for a yearly epidemic in much of the world. To better predict short-term, seasonal variations in flu infection rates and possible mechanisms of yearly infection variation, we trained a Long Short-Term Memory (LSTM)-based deep neural network on historical Influenza-Like-Illness (ILI), climate, and population data. METHODS: Data were collected from the Centers for Disease Control and Prevention (CDC), the National Center for Environmental Information (NCEI), and the United States Census Bureau. The model was initially built in Python using the Keras API and tuned manually. We explored the roles of temperature, precipitation, local wind speed, population size, vaccination rate, and vaccination efficacy. The model was validated using K-fold cross validation as well as forward chaining cross validation and compared to several standard algorithms. Finally, simulation data was generated in R and used for further exploration of the model. RESULTS: We found that temperature is the strongest predictor of ILI rates, but also found that precipitation increased the predictive power of the network. Additionally, the proposed model achieved a +1 week prediction mean absolute error (MAE) of 0.1973. This is less than half of the MAE achieved by the next best performing algorithm. Additionally, the model accurately predicted simulation data. To test the role of temperature in the network, we phase-shifted temperature in time and found a predictable reduction in prediction accuracy. CONCLUSIONS: The results of this study suggest that short term flu forecasting may be effectively accomplished using architectures traditionally reserved for time series analysis. The proposed LSTM-based model was able to outperform comparison models at the +1 week time point. Additionally, this model provided insight into the week-to-week effects of climatic and biotic factors and revealed potential patterns in data series. Specifically, we found that temperature is the strongest predictor of seasonal flu infection rates. This information may prove to be especially important for flu forecasting given the uncertain long-term impact of the SARS-CoV-2 pandemic on seasonal influenza.


Assuntos
COVID-19 , Influenza Humana , Estados Unidos/epidemiologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2 , Redes Neurais de Computação , Pandemias/prevenção & controle
2.
Cell Rep ; 42(8): 112906, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540599

RESUMO

Hippocampal CA1 neurons generate single spikes and stereotyped bursts of spikes. However, it is unclear how individual neurons dynamically switch between these output modes and whether these two spiking outputs relay distinct information. We performed extracellular recordings in spatially navigating rats and cellular voltage imaging and optogenetics in awake mice. We found that spike bursts are preferentially linked to cellular and network theta rhythms (3-12 Hz) and encode an animal's position via theta phase precession, particularly as animals are entering a place field. In contrast, single spikes exhibit additional coupling to gamma rhythms (30-100 Hz), particularly as animals leave a place field. Biophysical modeling suggests that intracellular properties alone are sufficient to explain the observed input frequency-dependent spike coding. Thus, hippocampal neurons regulate the generation of bursts and single spikes according to frequency-specific network and intracellular dynamics, suggesting that these spiking modes perform distinct computations to support spatial behavior.


Assuntos
Ritmo Gama , Navegação Espacial , Ratos , Camundongos , Animais , Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Ritmo Teta/fisiologia
3.
Biol Cybern ; 117(3): 163-183, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060453

RESUMO

The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Biofísica
4.
J Neurosci ; 43(7): 1074-1088, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796842

RESUMO

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.


Assuntos
Neurociências , Biofísica
5.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36712051

RESUMO

Neurons in oscillatory networks often exhibit membrane potential resonance, a peak impedance at a non-zero input frequency. In electrically coupled oscillatory networks, the coupling coefficient (the ratio of post- and prejunctional voltage responses) could also show resonance. Such coupling resonance may emerge from the interaction between the coupling current and resonance properties of the coupled neurons, but this relationship has not been clearly described. Additionally, it is unknown if the gap-junction mediated electrical coupling conductance may have frequency dependence. We examined these questions by recording a pair of electrically coupled neurons in the oscillatory pyloric network of the crab Cancer borealis. We performed dual current- and voltage-clamp recordings and quantified the frequency preference of the coupled neurons, the coupling coefficient, the electrical conductance, and the postjunctional neuronal response. We found that all components exhibit frequency selectivity, but with distinct preferred frequencies. Mathematical and computational analysis showed that membrane potential resonance of the postjunctional neuron was sufficient to give rise to resonance properties of the coupling coefficient, but not the coupling conductance. A distinct coupling conductance resonance frequency therefore emerges either from other circuit components or from the gating properties of the gap junctions. Finally, to explore the functional effect of the resonance of the coupling conductance, we examined its role in synchronizing neuronal the activities of electrically coupled bursting model neurons. Together, our findings elucidate factors that produce electrical coupling resonance and the function of this resonance in oscillatory networks.

6.
J Comput Neurosci ; 50(4): 395-429, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869381

RESUMO

Temporal filters, the ability of postsynaptic neurons to preferentially select certain presynaptic input patterns over others, have been shown to be associated with the notion of information filtering and coding of sensory inputs. Short-term plasticity (depression and facilitation; STP) has been proposed to be an important player in the generation of temporal filters. We carry out a systematic modeling, analysis and computational study to understand how characteristic postsynaptic (low-, high- and band-pass) temporal filters are generated in response to periodic presynaptic spike trains in the presence STP. We investigate how the dynamic properties of these filters depend on the interplay of a hierarchy of processes, including the arrival of the presynaptic spikes, the activation of STP, its effect on the excitatory synaptic connection efficacy, and the response of the postsynaptic cell. These mechanisms involve the interplay of a collection of time scales that operate at the single-event level (roughly, during each presynaptic interspike-interval) and control the long-term development of the temporal filters over multiple presynaptic events. These time scales are generated at the levels of the presynaptic cell (captured by the presynaptic interspike-intervals), short-term depression and facilitation, synaptic dynamics and the post-synaptic cellular currents. We develop mathematical tools to link the single-event time scales with the time scales governing the long-term dynamics of the resulting temporal filters for a relatively simple model where depression and facilitation interact at the level of the synaptic efficacy change. We extend our results and tools to account for more complex models. These include multiple STP time scales and non-periodic presynaptic inputs. The results and ideas we develop have implications for the understanding of the generation of temporal filters in complex networks for which the simple feedforward network we investigate here is a building block.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal , Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia
7.
Chaos ; 32(6): 063137, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778129

RESUMO

Several distinct entrainment patterns can occur in the FitzHugh-Nagumo (FHN) model under external periodic forcing. Investigating the FHN model under different types of periodic forcing reveals the existence of multiple disconnected 1:1 entrainment segments for constant, low enough values of the input amplitude when the unforced system is in the vicinity of a Hopf bifurcation. This entrainment structure is termed polyglot to distinguish it from the single 1:1 entrainment region (monoglot) structure typically observed in Arnold tongue diagrams. The emergence of polyglot entrainment is then explained using phase-plane analysis and other dynamical system tools. Entrainment results are investigated for other slow-fast systems of neuronal, circadian, and glycolytic oscillations. Exploring these models, we found that polyglot entrainment structure (multiple 1:1 regions) is observed when the unforced system is in the vicinity of a Hopf bifurcation and the Hopf point is located near a knee of a cubic-like nullcline.


Assuntos
Neurônios , Neurônios/fisiologia
8.
PLoS Comput Biol ; 18(7): e1010364, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849626

RESUMO

Resonance is defined as maximal response of a system to periodic inputs in a limited frequency band. Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple levels of neuronal organization. However, it is unknown how neuronal resonance observed at the network level is generated and how network resonance depends on the properties of the network building blocks. Here, we first develop a metric for quantifying spike timing resonance in the presence of background noise, extending the notion of spiking resonance for in vivo experiments. Using conductance-based models, we find that network resonance can be inherited from resonances at other levels of organization, or be intrinsically generated by combining mechanisms across distinct levels. Resonance of membrane potential fluctuations, postsynaptic potentials, and single neuron spiking can each be generated independently of resonance at any other level and be propagated to the network level. At all levels of organization, interactions between processes that give rise to low- and high-pass filters generate the observed resonance. Intrinsic network resonance can be generated by the combination of filters belonging to different levels of organization. Inhibition-induced network resonance can emerge by inheritance from resonance of membrane potential fluctuations, and be sharpened by presynaptic high-pass filtering. Our results demonstrate a multiplicity of qualitatively different mechanisms that can generate resonance in neuronal systems, and provide analysis tools and a conceptual framework for the mechanistic investigation of network resonance in terms of circuit components, across levels of neuronal organization.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Potenciais da Membrana , Neurônios/fisiologia
9.
J Comput Neurosci ; 50(3): 331-355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653072

RESUMO

Neuronal systems are subject to rapid fluctuations both intrinsically and externally. These fluctuations can be disruptive or constructive. We investigate the dynamic mechanisms underlying the interactions between rapidly fluctuating signals and the intrinsic properties of the target cells to produce variable and/or coherent responses. We use linearized and non-linear conductance-based models and piecewise constant (PWC) inputs with short duration pieces. The amplitude distributions of the constant pieces consist of arbitrary permutations of a baseline PWC function. In each trial within a given protocol we use one of these permutations and each protocol consists of a subset of all possible permutations, which is the only source of uncertainty in the protocol. We show that sustained oscillatory behavior can be generated in response to various forms of PWC inputs independently of whether the stable equilibria of the corresponding unperturbed systems are foci or nodes. The oscillatory voltage responses are amplified by the model nonlinearities and attenuated for conductance-based PWC inputs as compared to current-based PWC inputs, consistent with previous theoretical and experimental work. In addition, the voltage responses to PWC inputs exhibited variability across trials, which is reminiscent of the variability generated by stochastic noise (e.g., Gaussian white noise). Our analysis demonstrates that both oscillations and variability are the result of the interaction between the PWC input and the target cell's autonomous transient dynamics with little to no contribution from the dynamics in vicinities of the steady-state, and do not require input stochasticity.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia
10.
Biol Cybern ; 116(2): 163-190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038010

RESUMO

We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and (ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z) and the peak-to-trough amplitude envelope ([Formula: see text]) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in response to sinusoidal inputs) also show [Formula: see text]-resonance in response to sinusoidal inputs, but generally do not (or do it very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in a network via subthreshold oscillations and resonance and the generation of network resonance.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia
11.
Math Biosci ; 343: 108756, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883104

RESUMO

Mathematical models for hepatitis C virus (HCV) dynamics have provided a means for evaluating the antiviral effectiveness of therapy and estimating treatment outcomes such as the time to cure. Recently, a mathematical modeling approach was used in the first proof-of-concept clinical trial assessing in real-time the utility of response-guided therapy with direct-acting antivirals (DAAs) in chronic HCV-infected patients. Several retrospective studies have shown that mathematical modeling of viral kinetics predicts time to cure of less than 12 weeks in the majority of individuals treated with sofosbuvir-based as well as other DAA regimens. A database of these studies was built, and machine learning methods were evaluated for their ability to estimate the time to cure for each patient to facilitate real-time modeling studies. Data from these studies exploring mathematical modeling of HCV kinetics under DAAs in 266 chronic HCV-infected patients were gathered. Different learning methods were applied and trained on part of the dataset ('train' set), to predict time to cure on the untrained part ('test' set). Our results show that this machine learning approach provides a means for establishing an accurate time to cure prediction that will support the implementation of individualized treatment.


Assuntos
Hepatite C Crônica , Hepatite C , Antivirais/uso terapêutico , Quimioterapia Combinada , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Humanos , Cinética , Aprendizado de Máquina , Modelos Teóricos , Estudos Retrospectivos , Resultado do Tratamento
12.
NPJ Syst Biol Appl ; 7(1): 32, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404807

RESUMO

Covalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.


Assuntos
Modelos Biológicos , Transdução de Sinais , Adaptação Fisiológica , Proteínas
13.
PLoS Comput Biol ; 16(8): e1007983, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745096

RESUMO

Many large-scale functional connectivity studies have emphasized the importance of communication through increased inter-region correlations during task states. In contrast, local circuit studies have demonstrated that task states primarily reduce correlations among pairs of neurons, likely enhancing their information coding by suppressing shared spontaneous activity. Here we sought to adjudicate between these conflicting perspectives, assessing whether co-active brain regions during task states tend to increase or decrease their correlations. We found that variability and correlations primarily decrease across a variety of cortical regions in two highly distinct data sets: non-human primate spiking data and human functional magnetic resonance imaging data. Moreover, this observed variability and correlation reduction was accompanied by an overall increase in dimensionality (reflecting less information redundancy) during task states, suggesting that decreased correlations increased information coding capacity. We further found in both spiking and neural mass computational models that task-evoked activity increased the stability around a stable attractor, globally quenching neural variability and correlations. Together, our results provide an integrative mechanistic account that encompasses measures of large-scale neural activity, variability, and correlations during resting and task states.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Adulto , Animais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
14.
Biol Cybern ; 113(4): 373-395, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286211

RESUMO

Action potential generation in neurons depends on a membrane potential threshold and therefore on how subthreshold inputs influence this voltage. In oscillatory networks, for example, many neuron types have been shown to produce membrane potential ([Formula: see text]) resonance: a maximum subthreshold response to oscillatory inputs at a nonzero frequency. Resonance is usually measured by recording [Formula: see text] in response to a sinusoidal current ([Formula: see text]), applied at different frequencies (f), an experimental setting known as current clamp (I-clamp). Several recent studies, however, use the voltage clamp (V-clamp) method to control [Formula: see text] with a sinusoidal input at different frequencies [[Formula: see text]] and measure the total membrane current ([Formula: see text]). The two methods obey systems of differential equations of different dimensionality, and while I-clamp provides a measure of electrical impedance [[Formula: see text]], V-clamp measures admittance [[Formula: see text]]. We analyze the relationship between these two measurement techniques. We show that, despite different dimensionality, in linear systems the two measures are equivalent: [Formula: see text]. However, nonlinear model neurons produce different values for Z and [Formula: see text]. In particular, nonlinearities in the voltage equation produce a much larger difference between these two quantities than those in equations of recovery variables that describe activation and inactivation kinetics. Neurons are inherently nonlinear, and notably, with ionic currents that amplify resonance, the voltage clamp technique severely underestimates the current clamp response. We demonstrate this difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings are instructive for researchers who explore cellular mechanisms of neuronal oscillations.


Assuntos
Relógios Biológicos/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Animais , Braquiúros
15.
J Comput Neurosci ; 46(2): 169-195, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30895410

RESUMO

Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and theoretically. However, whether MPR is simply an epiphenomenon or it plays a functional role for the generation of neuronal network oscillations and how the latent time scales present in individual, non-oscillatory cells affect the properties of the oscillatory networks in which they are embedded are open questions. We address these issues by investigating a minimal network model consisting of (i) a non-oscillatory linear resonator (band-pass filter) with 2D dynamics, (ii) a passive cell (low-pass filter) with 1D linear dynamics, and (iii) nonlinear graded synaptic connections (excitatory or inhibitory) with instantaneous dynamics. We demonstrate that (i) the network oscillations crucially depend on the presence of MPR in the resonator, (ii) they are amplified by the network connectivity, (iii) they develop relaxation oscillations for high enough levels of mutual inhibition/excitation, and (iv) the network frequency monotonically depends on the resonators resonant frequency. We explain these phenomena using a reduced adapted version of the classical phase-plane analysis that helps uncovering the type of effective network nonlinearities that contribute to the generation of network oscillations. We extend our results to networks having cells with 2D dynamics. Our results have direct implications for network models of firing rate type and other biological oscillatory networks (e.g, biochemical, genetic).


Assuntos
Potenciais da Membrana/fisiologia , Redes Neurais de Computação , Vias Neurais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Algoritmos , Relógios Biológicos/fisiologia , Humanos , Modelos Lineares , Modelos Neurológicos , Dinâmica não Linear
16.
Sci Rep ; 9(1): 1687, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737430

RESUMO

Ionic currents, whether measured as conductance amplitude or as ion channel transcript numbers, can vary many-fold within a population of identified neurons. In invertebrate neuronal types multiple currents can be seen to vary while at the same time their magnitudes are correlated. These conductance amplitude correlations are thought to reflect a tight homeostasis of cellular excitability that enhances the robustness and stability of neuronal activity over long stretches of time. Although such ionic conductance correlations are well documented in invertebrates, they have not been reported in vertebrates. Here we demonstrate with two examples, identified mouse hippocampal granule cells (GCs) and cholinergic basal forebrain neurons, that the correlation of ionic conductance amplitudes between different ionic currents also exists in vertebrates, and we argue that it is a ubiquitous phenomenon expressed by many species across phyla. We further demonstrate that in dentate gyrus GCs these conductance correlations are likely regulated in a circadian manner. This is reminiscent of the known conductance regulation by neuromodulators in crustaceans. However, in GCs we observe a more nuanced regulation, where for some conductance pairs the correlations are completely eliminated while for others the correlation is quantitatively modified but not obliterated.


Assuntos
Neurônios Colinérgicos/fisiologia , Crustáceos/fisiologia , Canais Iônicos/metabolismo , Animais , Giro Denteado/fisiologia , Fenômenos Eletrofisiológicos , Evolução Molecular , Feminino , Homeostase , Camundongos , Prosencéfalo/fisiologia
17.
J Math Neurosci ; 8(1): 13, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30519798

RESUMO

Theta (4-8 Hz) and gamma (30-80 Hz) rhythms in the brain are commonly associated with memory and learning (Kahana in J Neurosci 26:1669-1672, 2006; Quilichini et al. in J Neurosci 30:11128-11142, 2010). The precision of co-firing between neurons and incoming inputs is critical in these cognitive functions. We consider an inhibitory neuron model with M-current under forcing from gamma pulses and a sinusoidal current of theta frequency. The M-current has a long time constant (∼90 ms) and it has been shown to generate resonance at theta frequencies (Hutcheon and Yarom in Trends Neurosci 23:216-222, 2000; Hu et al. in J Physiol 545:783-805, 2002). We have found that this slow M-current contributes to the precise co-firing between the network and fast gamma pulses in the presence of a slow sinusoidal forcing. The M-current expands the phase-locking frequency range of the network, counteracts the slow theta forcing, and admits bistability in some parameter range. The effects of the M-current balancing the theta forcing are reduced if the sinusoidal current is faster than the theta frequency band. We characterize the dynamical mechanisms underlying the role of the M-current in enabling a network to be entrained to gamma frequency inputs using averaging methods, geometric singular perturbation theory, and bifurcation analysis.

18.
Annu Rev Stat Appl ; 5: 183-214, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976604

RESUMO

Mathematical and statistical models have played important roles in neuroscience, especially by describing the electrical activity of neurons recorded individually, or collectively across large networks. As the field moves forward rapidly, new challenges are emerging. For maximal effectiveness, those working to advance computational neuroscience will need to appreciate and exploit the complementary strengths of mechanistic theory and the statistical paradigm.

19.
J Comput Neurosci ; 43(3): 243-271, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29064059

RESUMO

The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs) requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage level and the spiking mechanisms. Combinations of the same types of ionic currents in different parameter regimes may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like), generating subthreshold (membrane potential) oscillations patterns with different properties. These nonlinearities are not apparent in the model equations, but can be uncovered by plotting the voltage nullclines in the phase-plane diagram. We investigate the spiking resonant properties of conductance-based models that are biophysically equivalent at the subthreshold level (same ionic currents), but dynamically different (parabolic- and cubic-like voltage nullclines). As a case study we consider a model having a persistent sodium and a hyperpolarization-activated (h-) currents, which exhibits subthreshold resonance in the theta frequency band. We unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of resonances. We also measure spiking phasonance, which is an extension of subthreshold phasonance (zero-phase-shift response to oscillatory inputs) to the spiking regime. The subthreshold resonant properties of both types of models are communicated to the spiking regime for low enough input amplitudes as the voltage response for the subthreshold resonant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no longer present in these models, but output spiking resonance is present primarily in the parabolic-like model due to a cycle skipping mechanism (involving mixed-mode oscillations), while the cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the underlying mechanisms and the mechanistic differences between the resonance types. Our results demonstrate that the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscillations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the fact that the identity of the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic information, captured by the geometric properties of the phase-space diagram, is needed.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Condução Nervosa/fisiologia , Neurônios/fisiologia , Dinâmica não Linear , Animais , Relógios Biológicos/fisiologia , Biofísica , Humanos , Modelos Teóricos
20.
Neuron ; 96(2): 267-284, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024654

RESUMO

This Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.


Assuntos
Corpo Estriado/fisiologia , Lateralidade Funcional/fisiologia , Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Animais , Corpo Estriado/citologia , Humanos , Rede Nervosa/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...