Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(9): e0307879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39298496

RESUMO

BACKGROUND: Device manufacturers who seek to market their pediatric facemasks in the United States (U.S.), as part of anthropometric data requirement, need to demonstrate their mask designs are expected to fit the intended user population. However, currently there are no well accepted test methodologies for pediatric facemasks. In addition, unlike N95 respirators, the expected maximum flow rate, and the pressure drop at that expected maximum flow rate for pediatric facemasks have not been established. METHOD: The objective of this article is three-fold; use a literature survey to determine the worst-case flow rate, and an acceptable breathing resistance; and come up with a bench-test based protocol for assessing fit of pediatric facemasks. RESULTS & DISCUSSION: The worst-case breathing flow rate for mask testing in the pediatric population is 45-60 Liters/minute (LPM), and the acceptable pressure drop at the worst-case flow rate is 2.0 mmH2O. A retrospective assessment of all the four brands of legally marketed facemasks in the U.S. that could be purchased, revealed that majority of the brands have high filtration efficiency (>95%) at low flow rate 5 LPM which reduces to ~ 80% at 45 LPM. At 5 LPM, the pressure drop ranges from 0.3-0.6 mmH2O, remaining below the 2.0 mmH2O. However, at higher flow rates, (representing strenuous activities, or older children (> 12 years)), most masks exhibited a pressure drop within the range of 2.9 to 6.0 mmH2O. Furthermore, opening the pleats of the facemasks completely results in a notable reduction in pressure drop (a 6.6-fold decrease, p = 0.03). To assess fit of these same brands of facemasks, we then updated our previous validated adult manikin fit-test method and used it in manikins in the age group of 2 to 14 years. Either poor nose-clip adherence to the manikin, low filtration efficiency of the pediatric facemasks, or off-label use (i.e. when donned on manikins representing 2 years to 14 years) contributed to low fit. CONCLUSIONS: A new bench-top tool to evaluate quantitative fit of pediatric facemasks was developed. In addition, based on the research reported here, we provide practical implications for the members of the community: users, academia and medical device manufacturers.


Assuntos
Desenho de Equipamento , Máscaras , Humanos , Estados Unidos , Criança , Estudos Retrospectivos , Pré-Escolar
2.
J Occup Environ Hyg ; 18(8): 369-377, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170797

RESUMO

The National Institute for Occupational Safety and Health's methods and requirements for air-purifying respirator breathing resistance in 42 CFR Part 84 do not include work of breathing. The International Organization for Standardization Technical Committee 94, Subcommittee 15 utilized work of breathing to evaluate airflow resistance for all classes of respiratory protective devices as part of their development of performance standards regarding respiratory protective devices. The objectives of this study were: (1) to evaluate the relationship between the International Organization for Standardization's work of breathing measurements and the National Institute for Occupational Safety and Health's breathing resistance test results; (2) to provide scientific bases for standard development organizations to decide if work of breathing should be adopted; and (3) to establish regression equations for manufacturers and test laboratories to estimate work of breathing measurements using breathing resistance data. A total of 43 respirators were tested for work of breathing at minute ventilation rates of 10, 35, 65, 105, and 135 liters per minute. Breathing resistance obtained at a constant flow rate of 85 liters per minute per National Institute of Occupational Safety and Health protocol was correlated to each of the parameters (total work of breathing, inhalation, and exhalation) obtained from the work of breathing tests. The ratio of work of breathing exhalation to work of breathing inhalation for all air-purifying respirators is similar to the ratio of exhalation to inhalation resistance when tested individually. The ratios were about 0.8 for filtering facepiece respirators, 0.5 for half-masks, and 0.25 for full-facepiece respirators. The National Institute for Occupational Safety and Health's breathing resistance is close to work of breathing's minute ventilation of 35 liters per minute, which represents the common walking/working pace in most workplaces. The work of breathing and the National Institute of Occupational Safety and Health's breathing resistance were found to be strongly and positively correlated (r values of 0.7-0.9) at each work rate for inhalation and exhalation. In addition, linear and multiple regression models (R-squared values of 0.5-0.8) were also established to estimate work of breathing using breathing resistance. Work of breathing was correlated higher to breathing resistance for full-facepiece and half-mask elastomeric respirators than filtering facepiece respirators for inhalation. For exhalation, filtering facepiece respirators were correlated much better than full-facepiece and half-mask elastomeric respirators. Therefore, the National Institute for Occupational Safety and Health's breathing resistance may reasonably be used to predict work of breathing for air-purifying respirators. The results could also be used by manufacturers for product development and evaluation.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Dispositivos de Proteção Respiratória , Filtração , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/prevenção & controle , Taxa Respiratória , Estados Unidos , Trabalho Respiratório
3.
J Int Soc Respir Prot ; 38(2): 42-55, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35611386

RESUMO

Background: Non-medical face masks, such as face coverings donned by the general population play an important role in reducing transmission of respiratory pathogens. Pressure drop or breathability of such masks is an important attribute especially with the advent of new standards such as ASTM F3502-21 that have specified pressure drop limits for general use of face coverings. Although several standards are available that discuss pressure drop measurement techniques, the methodologies reported are typically complex or are part of more sophisticated and expensive instruments. Thus, the applicability of such methods is often limited to medical device manufacturers. Objective and Methods: This manuscript adapts from the pressure drop measurements proposed in British Standard EN 14683:2019 and describes a methodology to create a simple 3D printed model of a pressure rig for measuring the breathing resistance across non-medical face masks. The method also enables real time pressure drop data acquisition and analysis of multiple samples or batches using Python and MATLAB scripts. Results: We performed a validation study by comparing the pressure drop obtained for one brand of respirators with our set up and compared it with data obtained by traditional means by CDC. An unpaired two-tailed student t-test (n=3) between the two means implied no statistically significant difference. Conclusion: The method we have developed can be easily implemented at community levels for characterizing the breathability of non-medical grade face masks.

4.
J Occup Environ Hyg ; 18(1): 28-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284081

RESUMO

Powered air-purifying respirators (PAPRs) are worn to protect workers from hazardous respiratory exposures in a wide range of workplaces, including healthcare. However, PAPRs may diminish the ability of wearers to correctly hear words spoken by others, potentially interfering with safe performance of healthcare duties. Accordingly, the impact of PAPRs during healthcare use on speech intelligibility (SI) and consequently on user safety, usability, and patient care is not well studied. The objectives of this study were to (1) determine a listener's ability to comprehend single-syllable words spoken by a PAPR wearer; (2) determine a PAPR wearer's ability to intelligibly hear and identify single-syllable words spoken by a PAPR wearer; (3) to assess the variability between speakers, listeners, and PAPR models; (4) to investigate the effects of PAPR design features on SI; and (5) inform a SI requirement for certifying future PAPRs for use in healthcare. This study utilized a Modified Rhyme Test to assess SI for PAPRs. The current National Institute for Occupational Safety and Health (NIOSH) methods for assessing SI are limited to the recently introduced PAPR100 respirator class and the class of respirators claiming chemical, biological, radiological, and nuclear (CBRN) protections. Four NIOSH-approved PAPRs were evaluated using four human subjects. Four experimental conditions were examined:(1) Speaker and Listener with no PAPR; (2) Speaker and Listener both wearing PAPRs; (3) Speaker with a PAPR, Listener without a PAPR; and (4) Speaker without a PAPR, Listener with a PAPR resulted in a total of 144 experiments. Statistical analysis showed that the SI performance ratings were not significantly different among the PAPR models, but experimental conditions had significant impact on SI. The pattern of SI across the conditions of the experiment also showed a significant difference depending on PAPR model. The SI performance rating for all PAPRs could meet the current NIOSH CBRN certification requirement for speech intelligibility.


Assuntos
Dispositivos de Proteção Respiratória/normas , Inteligibilidade da Fala , Desenho de Equipamento , Pessoal de Saúde , Humanos
5.
J Int Soc Respir Prot ; 36(1): 36-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508389

RESUMO

During a public health emergency, respirator shortages can have a profound impact on the national response, such as for the current coronavirus disease 2019 (COVID-19) pandemic. Due to a severe shortage of respirators (particularly filtering facepiece respirators [FFRs]), there may be contexts in which understanding the performance of FFRs that are approved for use as part of a crisis capacity strategy is desired. This includes FFRs that are not covered under the National Institute for Occupational Safety and Health (NIOSH) Respirator Approval Program because they have been stored past their designated shelf life, have been decontaminated, or are approved by international certification bodies other than NIOSH. The purpose of this document is to provide a general framework to assess the performance of FFRs that are only being used as a crisis capacity strategy. The intended audience are those who are responsible for managing large amounts of FFRs. This framework includes a four-step process consisting of: 1) defining the population of FFRs to be sampled; 2) providing sampling strategy options; 3) inspecting and testing the sampled units; and 4) evaluating the results. In addition to the four-step process, we provide an example of how NIOSH recently evaluated the quality of FFRs sampled from ten U.S. stockpiles.

6.
J Int Soc Respir Prot ; 37(1): 52-60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508390

RESUMO

During epidemics and pandemics healthcare personnel (HCP) are on the front line of disease containment and mitigation. Personal protective equipment (PPE), such as NIOSH-approved N95 filtering facepiece respirators (FFRs), serve an important role in minimizing HCP risks and are in high demand during public health emergencies. Because PPE demand can exceed supply, various public health strategies have been developed to reduce the rate of PPE consumption as supply dwindles. Extended use and limited reuse of N95 FFRs are strategies advocated by many governmental agencies used to increase the number of times a device can be used. Increased use of respirators designed for reuse-such as powered air-purifying respirators (PAPRs) and elastomeric half-mask and full facepiece air-purifying respirators- is another option designed to reduce the continuous need for new devices as the daily need for respirator use increases. Together, these strategies are designed to reduce the number of PPE units that must be discarded daily and, therefore, extend the longevity of available supply. The purpose of this paper is to theoretically estimate the impact of extended use and limited reuse strategies for N95 FFRs and the increased use of reusable respirator options on PPE consumed. The results suggest that a considerable reduction in PPE consumption would result from extended use and limited reuse of N95 FFRs and the increased use of respirators designed for reuse; however, the practical benefits must be balanced with the risks and economic costs. In addition, extended use and reuse strategies must be accompanied by proper procedures to reduce risk. The study is designed to support epidemic and pandemic PPE supply and demand planning efforts.

7.
Health Secur ; 17(4): 324-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31433277

RESUMO

Medical countermeasure stockpiles in the United States are designed to support healthcare workers and the public during public health emergencies; they include supplies of personal protective equipment (PPE). As part of typical PPE manufacturing processes, appropriate test methods are used to ensure that the devices provide adequate protective performance. At the time of manufacture, performance is often measured and weighed against an objective standard of quality, resulting in a pass or fail attribute being assigned to individual PPE items and thence to production lots. Incorporating periodic performance testing for stockpiled PPE can ensure that they maintain their protective qualities and integrity over time while in storage. There is an absence of guidance regarding how to design quality assurance programs for stockpiled PPE. The applicability of the Lot Quality Assurance Sampling (LQAS) approach to stockpiled PPE was examined in a previous study that compared and contrasted different sample sizes in recovering the true percentage of defective units in large lots in the LQAS framework. The current study carries this line of inquiry forward by integrating PPE degradation over time and comparing different sampling time intervals in recovering the true underlying degradation rate. The results suggest that product degradation is more easily detected when tested at shorter time intervals and for higher degradation rates. They further suggest that sampling interval groupings can be made based on the proficiency with which they recover the true underlying degradation rate.


Assuntos
Simulação por Computador , Amostragem para Garantia da Qualidade de Lotes/estatística & dados numéricos , Equipamento de Proteção Individual/normas , Humanos , Saúde Pública , Estados Unidos
8.
Health Secur ; 17(2): 140-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31009257

RESUMO

Personal protective equipment (PPE) stockpiles in the United States were established to facilitate rapid deployment of medical assets to sites affected by public health emergencies. Large quantities of PPE were introduced into US stockpiles because of the need to protect healthcare and other professionals during these events. Because most stockpiled PPE was acquired during, or immediately following, large-scale public health events, such as pandemic influenza planning (2005-20080), SARS (2003), H1N1 (2009-10), and Ebola (2014-15), aging PPE poses a significant problem. PPE such as N95 filtering face piece respirators were not designed to be stored for long periods, and much of the currently stored PPE has exceeded its manufacturer-assigned shelf life. Given the significant investment in the procurement and storage of PPE, along with projections of consumption during public health emergencies, discarding large quantities of potentially viable PPE is not an attractive option. Although shelf-life extension programs exist for other stockpiled medical assets, no such option is currently available for stockpiled PPE. This article posits stockpile quality assurance sampling plans as a mechanism through which shelf-life extension programs for stockpiled PPE may be achieved. We discuss some of the nuances that should be considered when developing a plan tailored to stockpiles and provide basic decision tools that may be used in the context of a quality assurance program tailored to stockpiled PPE. We also explore basic information by comparing and contrasting different sample size options.


Assuntos
Equipamento de Proteção Individual/normas , Controle de Qualidade , Estoque Estratégico/normas , Surtos de Doenças/prevenção & controle , Humanos , Equipamento de Proteção Individual/provisão & distribuição , Tamanho da Amostra , Estados Unidos
9.
J Int Soc Respir Prot ; 34(2): 69-80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30364841

RESUMO

Long term storage of personal protective equipment (PPE) in stockpiles is increasingly common in preparation for use during public health emergency responses. Confidence in PPE requires an understanding of the impact of time in storage on all aspects of PPE effectiveness, including protection against inward leakage. Disposable N95 filtering facepiece respirators (FFR) typically rely upon inexpensive elastomeric head straps to provide an effective seal between the filter body and the wearer's face. Annual fit testing provides a measure of assurance that a model fresh from the manufacturer will prove effective, but seal quality may degrade during long term storage. This study examines the stability of a s election of polyisoprene elastomer straps taken from various ages of common N95 FFRs. The tension of the straps at a predetermined strain of 150% was found to differ according to age for one respirator model, though whether due to age or due to manufacturing variations could not be determined. The straps from one manufacturer were found to have notable variation in length, indicating that minor variations in strap tensile properties may not result in significant differences in respirator seal quality. Based on our observations, prolonged storage may affect the tensile properties of headstraps for some models of N95.

10.
Ann Occup Hyg ; 58(9): 1175-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187034

RESUMO

In a respirator fit test, a subject is required to perform a series of exercises that include moving the head up and down and rotating the head left and right. These head movements could affect respirator sealing properties during the fit test and consequently affect fit factors. In a model-based system, it is desirable to have similar capability to predict newly designed respirators. In our previous work, finite element modeling (FEM)-based contact simulation between a headform and a filtering facepiece respirator was carried out. However, the headform was assumed to be static or fixed. This paper presents the first part of a series study on the effect of headform movement on contact pressures-a new headform with the capability to move down (flexion), up (extension), and rotate left and right-and validation. The newly developed headforms were validated for movement by comparing the simulated cervical vertebrae rotation angles with experimental results from the literature.


Assuntos
Simulação por Computador , Movimentos da Cabeça , Teste de Materiais/métodos , Modelos Anatômicos , Dispositivos de Proteção Respiratória , Fenômenos Biomecânicos , Vértebras Cervicais/fisiologia , Desenho de Equipamento , Movimentos da Cabeça/fisiologia , Humanos , Exposição Ocupacional/prevenção & controle , Pressão , Reprodutibilidade dos Testes , Estresse Mecânico
11.
Ann Occup Hyg ; 58(9): 1186-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187035

RESUMO

Finite element (FE) filtering facepiece respirators (FFRs) were developed and mated to the new headforms with a cervical spine model. The FFRs from three manufacturers included three sizing systems: (i) a single one-size-fits all, (ii) an FFR with two sizes (S/M and M/L), and (iii) an FFR with three sizes (S, L/M, XL). Finite element method (FEM) simulations of 16 headform and respirator combinations (5 headforms and 6 respirators) were used to examine maximum contact pressure changes for five cases: static head, flexion, extension, left rotation, and right rotation. For each of the 16 headform and respirator combinations, maximum contact pressures of the static headform and motile headforms were compared using t-tests. Significant differences on the maximum contact pressures were found in the extension, left rotation and right rotation at the nose (P < 0.005), the left rotation at the top of right cheek (P = 0.03), and the extension at the bottom of left/right cheek (P = 0.01). When separately considering each headform and each FFR manufacturer, the effects of the four head movement cases on the nose maximum contact pressure changes were observed in the simulations with all five headforms and all FFR manufacturers. The effects of the left and right rotations on the chin maximum contact pressure changes were observed in the simulations with the small headform. It was also found that the use of a nose clip could reduce the impact of the head left/right rotations on nose maximum contact pressure changes. In addition, head movements changed pressure contours of the key nose area. Caused by the head movements, the maximum contact pressure changes may affect seal quality, and the increase of the maximum contact pressures could reduce the facial comfort level.


Assuntos
Simulação por Computador , Movimentos da Cabeça , Teste de Materiais/métodos , Modelos Anatômicos , Dispositivos de Proteção Respiratória , Fenômenos Biomecânicos , Desenho de Equipamento , Análise de Elementos Finitos , Movimentos da Cabeça/fisiologia , Humanos , Exposição Ocupacional/prevenção & controle , Pressão , Reprodutibilidade dos Testes , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA