Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
2.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38127456

RESUMO

Despite clinical use of immunosuppressive agents, the immunopathogenesis of minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) remains unclear. Src homology 3-binding protein 2 (SH3BP2), a scaffold protein, forms an immune signaling complex (signalosome) with 17 other proteins, including phospholipase Cγ2 (PLCγ2) and Rho-guanine nucleotide exchange factor VAV2 (VAV2). Bioinformatic analysis of human glomerular transcriptome (Nephrotic Syndrome Study Network cohort) revealed upregulated SH3BP2 in MCD and FSGS. The SH3BP2 signalosome score and downstream MyD88, TRIF, and NFATc1 were significantly upregulated in MCD and FSGS. Immune pathway activation scores for Toll-like receptors, cytokine-cytokine receptor, and NOD-like receptors were increased in FSGS. Lower SH3BP2 signalosome score was associated with MCD, higher estimated glomerular filtration rate, and remission. Further work using Sh3bp2KI/KI transgenic mice with a gain-in-function mutation showed ~6-fold and ~25-fold increases in albuminuria at 4 and 12 weeks, respectively. Decreased serum albumin and unchanged serum creatinine were observed at 12 weeks. Sh3bp2KI/KI kidney morphology appeared normal except for increased mesangial cellularity and patchy foot process fusion without electron-dense deposits. SH3BP2 co-immunoprecipitated with PLCγ2 and VAV2 in human podocytes, underscoring the importance of SH3BP2 in immune activation. SH3BP2 and its binding partners may determine the immune activation pathways resulting in podocyte injury leading to loss of the glomerular filtration barrier.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Síndrome Nefrótica , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Rim/patologia , Glomérulos Renais/patologia , Camundongos Transgênicos , Nefrose Lipoide/patologia , Síndrome Nefrótica/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo
3.
J Exp Clin Cancer Res ; 42(1): 276, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865776

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICI) can lead to immune-related adverse events (irAEs) in a significant proportion of patients. The mechanisms underlying irAEs development are mostly unknown and might involve multiple immune effectors, such as T cells, B cells and autoantibodies (AutoAb). METHODS: We used custom autoantigen (AutoAg) microarrays to profile AutoAb related to irAEs in patients receiving ICI. Plasma was collected before and after ICI from cancer patients participating in two clinical trials (NCT03686202, NCT02644369). A one-time collection was obtained from healthy controls for comparison. Custom arrays with 162 autoAg were used to detect IgG and IgM reactivities. Differences of median fluorescent intensity (MFI) were analyzed with Wilcoxon sign rank test and Kruskal-Wallis test. MFI 500 was used as threshold to define autoAb reactivity. RESULTS: A total of 114 patients and 14 healthy controls were included in this study. irAEs of grade (G) ≥ 2 occurred in 37/114 patients (32%). We observed a greater number of IgG and IgM reactivities in pre-ICI collections from patients versus healthy controls (62 vs 32 p < 0.001). Patients experiencing irAEs G ≥ 2 demonstrated pre-ICI IgG reactivity to a greater number of AutoAg than patients who did not develop irAEs (39 vs 33 p = 0.040). We observed post-treatment increase of IgM reactivities in subjects experiencing irAEs G ≥ 2 (29 vs 35, p = 0.021) and a decrease of IgG levels after steroids (38 vs 28, p = 0.009). CONCLUSIONS: Overall, these results support the potential role of autoAb in irAEs etiology and evolution. A prospective study is ongoing to validate our findings (NCT04107311).


Assuntos
Autoantígenos , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Prospectivos , Imunoglobulina G , Imunoglobulina M , Estudos Retrospectivos
4.
Front Immunol ; 14: 1120710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911671

RESUMO

Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein modification that is comprised of various components including the 76-amino acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We and others have recently provided genetic evidence showing that E3-ubiquitin ligases are associated with bone metabolism, the immune system and inflammation through ubiquitylation and subsequent degradation of their substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2) causes cherubism, an autosomal dominant disorder associated with severe inflammatory craniofacial dysmorphia syndrome in children. In this review, on the basis of our discoveries in cherubism, we summarize new insights into the roles of E3-ubiquitin ligases in the development of human disorders caused by an abnormal osteoimmune system by highlighting recent genetic evidence obtained in both human and animal model studies.


Assuntos
Querubismo , Ubiquitina-Proteína Ligases , Animais , Criança , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética
5.
Trends Mol Med ; 29(5): 390-405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948987

RESUMO

Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.


Assuntos
Querubismo , Tanquirases , Humanos , Tanquirases/genética , Tanquirases/química , Tanquirases/metabolismo , Querubismo/genética , Querubismo/metabolismo , Ubiquitinação , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Sci Rep ; 13(1): 3334, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849518

RESUMO

Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Niacinamida , Neoplasias Ovarianas/tratamento farmacológico , Fosfatos de Dinucleosídeos
7.
Clin Exp Rheumatol ; 41(9): 1735-1745, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36700637

RESUMO

OBJECTIVES: PARPs, which are members of the poly(ADP-ribose) polymerase superfamily, promote tumorigenesis and tumour-associated inflammation and are thus therapeutic targets for several cancers. The aim of the present study is to investigate the mechanistic insight into the roles PARPs for inflammation. METHODS: Primary murine macrophages were cultured in the presence or absence of the PARP5 inhibitor NVP-TNKS656 to examine the role of PARP5 for cytokine production. RESULTS: In contrast to the roles of other PARPs for induction of inflammation, we found in the present study that pharmacologic inhibition of PARP5 induces production of inflammatory cytokines in primary murine macrophages. We found that treatment with the PARP5 inhibitor NVP-TNKS656 in macrophages enhanced steady-state and LPS-mediated cytokine production through degradation of IκBα and subsequent nuclear translocation of NF-κB. We also found that pharmacologic inhibition of PARP5 stabilises the adaptor protein 3BP2, a substrate of PARP5, and that accelerated cytokine production induced by PARP5 inhibition was rescued in 3BP2-deleted macrophages. Additionally, we found that LPS increases the expression of 3BP2 and AXIN1, a negative regulator of ß-catenin, through suppression of PARP5 transcripts in macrophages, leading to further activation of cytokine production and inhibition of ß-catenin-mediated cell proliferation, respectively. Lastly, we found that PARP5 inhibition in macrophages promotes osteoclastogenesis through stabilisation of 3BP2 and AXIN1, leading to activation of SRC and suppression of ß-catenin, respectively. CONCLUSIONS: Our results show that pharmacologic inhibition of PARP5 against cancers unexpectedly induces adverse autoinflammatory side effects through activation of innate immunity, unlike inhibition of other PARPs.


Assuntos
Lipopolissacarídeos , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/uso terapêutico , Lipopolissacarídeos/farmacologia , Osteogênese , NF-kappa B/metabolismo , Citocinas/metabolismo , Inflamação , Poli(ADP-Ribose) Polimerase-1/uso terapêutico
8.
J Immunol ; 208(12): 2702-2712, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667842

RESUMO

CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.


Assuntos
Fatores de Iniciação em Eucariotos , Fosfoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Mamíferos/genética , Camundongos , Biogênese de Organelas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas
9.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362478

RESUMO

Dysregulation of Toll-like receptor (TLR) signaling contributes to the pathogenesis of autoimmune diseases. Here, we provide genetic evidence that tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, negatively regulates TLR2 signaling. We show that mice lacking tankyrase in myeloid cells developed severe systemic inflammation with high serum inflammatory cytokine levels. We provide mechanistic evidence that tankyrase deficiency resulted in tyrosine phosphorylation and activation of TLR2 and show that phosphorylation of tyrosine 647 within the TIR domain by SRC and SYK kinases was critical for TLR2 stabilization and signaling. Last, we show that the elevated cytokine production and inflammation observed in mice lacking tankyrase in myeloid cells were dependent on the adaptor protein 3BP2, which is required for SRC and SYK activation. These data demonstrate that tankyrase provides a checkpoint on the TLR-mediated innate immune response.


Assuntos
Doenças Autoimunes , Inflamação , Tanquirases , Receptor 2 Toll-Like , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Doenças Autoimunes/genética , Inflamação/genética , Camundongos , Transdução de Sinais , Quinase Syk/metabolismo , Tanquirases/genética , Tanquirases/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
11.
Gastroenterology ; 162(4): 1183-1196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968454

RESUMO

BACKGROUND & AIMS: N6-methyladenosine (m6A) governs the fate of RNAs through m6A readers. Colorectal cancer (CRC) exhibits aberrant m6A modifications and expression of m6A regulators. However, how m6A readers interpret oncogenic m6A methylome to promote malignant transformation remains to be illustrated. METHODS: YTH N6-methyladenosine RNA binding protein 1 (Ythdf1) knockout mouse was generated to determine the effect of Ythdf1 in CRC tumorigenesis in vivo. Multiomic analysis of RNA-sequencing, m6A methylated RNA immunoprecipitation sequencing, YTHDF1 RNA immunoprecipitation sequencing, and proteomics were performed to unravel targets of YTHDF1 in CRC. The therapeutic potential of targeting YTHDF1-m6A-Rho/Rac guanine nucleotide exchange factor 2 (ARHGEF2) was evaluated using small interfering RNA (siRNA) encapsulated by lipid nanoparticles (LNP). RESULTS: DNA copy number gain of YTHDF1 is a frequent event in CRC and contributes to its overexpression. High expression of YTHDF1 is significantly associated with metastatic gene signature in patient tumors. Ythdf1 knockout in mice dampened tumor growth in an inflammatory CRC model. YTHDF1 promotes cell growth in CRC cell lines and primary organoids and lung and liver metastasis in vivo. Integrative multiomics analysis identified RhoA activator ARHGEF2 as a key downstream target of YTHDF1. YTHDF1 binds to m6A sites of ARHGEF2 messenger RNA, resulting in enhanced translation of ARHGEF2. Ectopic expression of ARHGEF2 restored impaired RhoA signaling, cell growth, and metastatic ability both in vitro and in vivo caused by YTHDF1 loss, verifying that ARHGEF2 is a key target of YTHDF1. Finally, ARHGEF2 siRNA delivered by LNP significantly suppressed tumor growth and metastasis in vivo. CONCLUSIONS: We identify a novel oncogenic epitranscriptome axis of YTHDF1-m6A-ARHGEF2, which regulates CRC tumorigenesis and metastasis. siRNA-delivering LNP drug validated the therapeutic potential of targeting this axis in CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Carcinogênese/genética , Neoplasias Colorretais/patologia , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Cancer Res Commun ; 2(5): 293-306, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36875717

RESUMO

Drug repurposing is an attractive option for oncology drug development. Itraconazole is an antifungal ergosterol synthesis inhibitor that has pleiotropic actions including cholesterol antagonism, inhibition of Hedgehog and mTOR pathways. We tested a panel of 28 epithelial ovarian cancer (EOC) cell lines with itraconazole to define its spectrum of activity. To identify synthetic lethality in combination with itraconazole, a whole-genome drop-out genome-scale clustered regularly interspaced short palindromic repeats sensitivity screen in two cell lines (TOV1946 and OVCAR5) was performed. On this basis, we conducted a phase I dose-escalation study assessing the combination of itraconazole and hydroxychloroquine in patients with platinum refractory EOC (NCT03081702). We identified a wide spectrum of sensitivity to itraconazole across the EOC cell lines. Pathway analysis showed significant involvement of lysosomal compartments, the trans-golgi network and late endosomes/lysosomes; similar pathways are phenocopied by the autophagy inhibitor, chloroquine. We then demonstrated that the combination of itraconazole and chloroquine displayed Bliss defined synergy in EOC cancer cell lines. Furthermore, there was an association of cytotoxic synergy with the ability to induce functional lysosome dysfunction, by chloroquine. Within the clinical trial, 11 patients received at least one cycle of itraconazole and hydroxychloroquine. Treatment was safe and feasible with the recommended phase II dose of 300 and 600 mg twice daily, respectively. No objective responses were detected. Pharmacodynamic measurements on serial biopsies demonstrated limited pharmacodynamic impact. In vitro, itraconazole and chloroquine have synergistic activity and exert a potent antitumor effect by affecting lysosomal function. The drug combination had no clinical antitumor activity in dose escalation. Significance: The combination of the antifungal drug itraconazole with antimalarial drug hydroxychloroquine leads to a cytotoxic lysosomal dysfunction, supporting the rational for further research on lysosomal targeting in ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Itraconazol/farmacologia , Hidroxicloroquina/farmacologia , Antifúngicos/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Cloroquina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Lisossomos , Homeostase
14.
Blood Adv ; 5(16): 3120-3133, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34406376

RESUMO

How hematopoietic stem cells (HSCs) coordinate their divisional axis and whether this orientation is important for stem cell-driven hematopoiesis is poorly understood. Single-cell RNA sequencing data from patients with Shwachman-Diamond syndrome (SDS), an inherited bone marrow failure syndrome, show that ARHGEF2, a RhoA-specific guanine nucleotide exchange factor and determinant of mitotic spindle orientation, is specifically downregulated in SDS hematopoietic stem and progenitor cells (HSPCs). We demonstrate that transplanted Arhgef2-/- fetal liver and bone marrow cells yield impaired hematopoietic recovery and a production deficit from long-term HSCs, phenotypes that are not the result of differences in numbers of transplanted HSCs, their cell cycle status, level of apoptosis, progenitor output, or homing ability. Notably, these defects are functionally restored in vivo by overexpression of ARHGEF2 or its downstream activated RHOA GTPase. By using live imaging of dividing HSPCs, we show an increased frequency of misoriented divisions in the absence of Arhgef2. ARHGEF2 knockdown in human HSCs also impairs their ability to regenerate hematopoiesis, culminating in significantly smaller xenografts. Together, these data demonstrate a conserved role for Arhgef2 in orienting HSPC division and suggest that HSCs may divide in certain orientations to establish hematopoiesis, the loss of which could contribute to HSC dysfunction in bone marrow failure.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Apoptose , Células da Medula Óssea , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fuso Acromático
15.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34128958

RESUMO

Rab11 GTPase proteins are required for cytokinesis, ciliogenesis, and lumenogenesis. Rab11a is critical for apical delivery of podocalyxin (PODXL) during lumen formation in epithelial cells. SH3BP5 and SH3BP5L are guanine nucleotide exchange factors (GEFs) for Rab11. We show that SH3BP5 and SH3BP5L are required for activation of Rab11a and cyst lumen formation. Using proximity-dependent biotin identification (BioID) interaction proteomics, we have identified SH3BP5 and its paralogue SH3BP5L as new substrates of the poly-ADP-ribose polymerase Tankyrase and the E3 ligase RNF146. We provide data demonstrating that epithelial polarity via cyst lumen formation is governed by Tankyrase, which inhibits Rab11a activation through the suppression of SH3BP5 and SH3BP5L. RNF146 reduces Tankyrase protein abundance and restores Rab11a activation and lumen formation. Thus, Rab11a activation is controlled by a signaling pathway composed of the sequential inhibition of SH3BP5 paralogues by Tankyrase, which is itself suppressed by RNF146.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Sialoglicoproteínas/genética , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina , Humanos , Ligação Proteica , Transdução de Sinais/genética , Tanquirases/genética
16.
Front Oncol ; 11: 665273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136397

RESUMO

Activity of transcription factors is normally regulated through interaction with other transcription factors, chromatin remodeling proteins and transcriptional co-activators. In distinction to these well-established transcriptional controls of gene expression, we have uncovered a unique activation model of transcription factors between tyrosine kinase ABL and RUNX2, an osteoblastic master transcription factor, for cancer invasion. We show that ABL directly binds to, phosphorylates, and activates RUNX2 through its SH2 domain in a kinase activity-dependent manner and that the complex formation of these proteins is required for expression of its target gene MMP13. Additionally, we show that the RUNX2 transcriptional activity is dependent on the number of its tyrosine residues that are phosphorylated by ABL. In addition to regulation of RUNX2 activity, we show that ABL transcriptionally enhances RUNX2 expression through activation of the bone morphogenetic protein (BMP)-SMAD pathway. Lastly, we show that ABL expression in highly metastatic breast cancer MDA-MB231 cells is associated with their invasive capacity and that ABL-mediated invasion is abolished by depletion of endogenous RUNX2 or MMP13. Our genetic and biochemical evidence obtained in this study contributes to a mechanistic insight linking ABL-mediated phosphorylation and activation of RUNX2 to induction of MMP13, which underlies a fundamental invasive capacity in cancer and is different from the previously described model of transcriptional activation.

17.
Sci Rep ; 11(1): 8502, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875686

RESUMO

Bone is a highly dynamic organ that undergoes remodeling equally regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. To clarify the regulation of osteoblastogenesis, primary murine osteoblasts are required for an in vitro study. Primary osteoblasts are isolated from neonatal calvariae through digestion with collagenase. However, the number of cells collected from one pup is not sufficient for further in vitro experiments, leading to an increase in the use of euthanized pups. We hypothesized that the viscosity of digested calvariae and digestion solution supplemented with collagenase results in cell clumping and reduction of isolated cells from bones. We simply added Benzonase, a genetically engineered endonuclease that shears all forms of DNAs/RNAs, in order to reduce nucleic acid-mediated viscosity. We found that addition of Benzonase increased the number of collected osteoblasts by three fold compared to that without Benzonase through reduction of viscosity. Additionally, Benzonase has no effect on cellular identity and function. The new osteoblast isolation protocol with Benzonase minimizes the number of neonatal pups required for an in vitro study and expands the concept that isolation of other populations of cells including osteocytes that are difficult to be purified could be modified by Benzonase.


Assuntos
Diferenciação Celular , Proliferação de Células , Endonucleases/metabolismo , Osteoblastos/citologia , Osteogênese , Crânio/citologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Crânio/metabolismo
18.
Ann Rheum Dis ; 80(9): 1236-1240, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33903092

RESUMO

BACKGROUND: Reports of severe COVID-19 being associated with thrombosis, antiphospholipid antibodies (APLA), and antiphospholipid syndrome have yielded disparate conclusions. Studies comparing patients with COVID-19 with contemporaneous controls of similar severity are lacking. METHODS: 22 COVID-19+ and 20 COVID-19- patients with respiratory failure admitted to intensive care were studied longitudinally. Demographic and clinical data were obtained from the day of admission. APLA testing included anticardiolipin (aCL), anti-ß2glycoprotien 1 (ß2GP1), antidomain 1 ß2GP1 and antiphosphatidyl serine/prothrombin complex. Antinuclear antibodies (ANAs) were detected by immunofluorescence and antibodies to cytokines by a commercially available multiplexed array. Analysis of variance was used for continuous variables and Fisher's exact test was used for categorical variables with α=0.05 and the false discovery rate at q=0.05. RESULTS: APLAs were predominantly IgG aCL (48%), followed by IgM (21%) in all patients, with a tendency towards higher frequency among the COVID-19+. aCL was not associated with surrogate markers of thrombosis but IgG aCL was strongly associated with worse disease severity and higher ANA titres regardless of COVID-19 status. An association between aCL and anticytokine autoantibodies tended to be higher among the COVID-19+. CONCLUSIONS: Positive APLA serology was associated with more severe disease regardless of COVID-19 status. TRIAL REGISTRATION NUMBER: NCT04747782.


Assuntos
Anticorpos Anticardiolipina/imunologia , Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/imunologia , COVID-19/imunologia , Idoso , Anticorpos Anticardiolipina/sangue , Anticorpos Antifosfolipídeos/sangue , Síndrome Antifosfolipídica/sangue , Síndrome Antifosfolipídica/complicações , COVID-19/sangue , COVID-19/complicações , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
19.
Nat Genet ; 53(4): 500-510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782605

RESUMO

Spleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function. A knock-in (SYK-Ser544Tyr) mouse model of a patient variant (p.Ser550Tyr) recapitulated aspects of the human disease that could be partially treated with a SYK inhibitor or transplantation of bone marrow from wild-type mice. Our studies demonstrate that SYK gain-of-function variants result in a potentially treatable form of inflammatory disease.


Assuntos
Artrite/genética , Colite/genética , Dermatite/genética , Linfoma Difuso de Grandes Células B/genética , Quinase Syk/genética , Adulto , Animais , Artrite/imunologia , Artrite/patologia , Artrite/terapia , Sequência de Bases , Transplante de Medula Óssea , Colite/imunologia , Colite/patologia , Colite/terapia , Dermatite/imunologia , Dermatite/patologia , Dermatite/terapia , Família , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Lactente , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Linhagem , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Quinase Syk/deficiência
20.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561012

RESUMO

Ovarian cancer (OC) is the most deadly gynecological malignancy, with unmet clinical need for new therapeutic approaches. The relaxin peptide is a pleiotropic hormone with reproductive functions in the ovary. Relaxin induces cell growth in several types of cancer, but the role of relaxin in OC is poorly understood. Here, using cell lines and xenograft models, we demonstrate that relaxin and its associated GPCR RXFP1 form an autocrine signaling loop essential for OC in vivo tumorigenesis, cell proliferation, and viability. We determined that relaxin signaling activates expression of prooncogenic pathways, including RHO, MAPK, Wnt, and Notch. We found that relaxin is detectable in patient-derived OC tumors, ascites, and serum. Further, inflammatory cytokines IL-6 and TNF-α activated transcription of relaxin via recruitment of STAT3 and NF-κB to the proximal promoter, initiating an autocrine feedback loop that potentiated expression. Inhibition of RXFP1 or relaxin increased cisplatin sensitivity of OC cell lines and abrogated in vivo tumor formation. Finally, we demonstrate that a relaxin-neutralizing antibody reduced OC cell viability and sensitized cells to cisplatin. Collectively, these data identify the relaxin/RXFP1 autocrine loop as a therapeutic vulnerability in OC.


Assuntos
Comunicação Autócrina , Carcinogênese/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Relaxina/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...