Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 148: 15-22, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27768934

RESUMO

INTRODUCTION: Platelets possess critical hemostatic functions in the system of thrombosis and hemostasis, which can be affected by a multitude of external factors. Previous research has shown that platelets have the capacity to synthesize proteins de novo and more recently a multicatalytic protein complex, the proteasome, has been discovered in platelets. Due to its vital function for cellular integrity, the proteasome has become a therapeutic target for anti-proliferative drug therapies in cancer. Clinically thrombocytopenia is a frequent side-effect, but the aggregatory function of platelets also appears to be affected. Little is known however about underlying regulatory mechanisms and functional aspects of proteasome inhibition on platelets. Our study aims to investigate the role of the proteasome in regulating collagen-induced platelet aggregation and its interaction with NFkB in this context. MATERIAL AND METHODS: Using fluorescence activity assays, platelet aggregometry and immunoblotting, we investigate regulatory interactions of the proteasome and Nuclear-factor-kappa-B (NFkB) in collagen-induced platelet aggregation. RESULTS: We show that collagen induces proteasome activation in platelets and collagen-induced platelet aggregation can be reduced with proteasome inhibition by the specific inhibitor epoxomicin. This effect does not depend on Rho-kinase/ROCK activation or thromboxane release, but rather depends on NFkB activation. Inhibition of the proteasome prevented cleavage of NFκB-inhibitor protein IκBα and decreased NFκB activity after collagen stimulation. Inhibition of the NFκB-pathway in return reduced collagen-induced platelet proteasome activity and cleavage of proteasome substrates. CONCLUSIONS: This work offers novel explanations how the proteasome influences collagen-dependent platelet aggregation by involving non-genomic functions of NFkB.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , NF-kappa B/metabolismo , Agregação Plaquetária , Complexo de Endopeptidases do Proteassoma/metabolismo , Plaquetas/citologia , Cálcio/metabolismo , Humanos , Transdução de Sinais
2.
PLoS One ; 10(3): e0121113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799543

RESUMO

INTRODUCTION: The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia. RESULTS: SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence. CONCLUSIONS: SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.


Assuntos
Células Endoteliais/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/enzimologia , Técnicas de Silenciamento de Genes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA