Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134989

RESUMO

The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.

2.
Stem Cell Reports ; 16(12): 2958-2972, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34739847

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a key regulator of low-density lipoprotein (LDL) cholesterol metabolism and the target of lipid-lowering drugs. PCSK9 is mainly expressed in hepatocytes. Here, we show that PCSK9 is highly expressed in undifferentiated human induced pluripotent stem cells (hiPSCs). PCSK9 inhibition in hiPSCs with the use of short hairpin RNA (shRNA), CRISPR/cas9-mediated knockout, or endogenous PCSK9 loss-of-function mutation R104C/V114A unveiled its new role as a potential cell cycle regulator through the NODAL signaling pathway. In fact, PCSK9 inhibition leads to a decrease of SMAD2 phosphorylation and hiPSCs proliferation. Conversely, PCSK9 overexpression stimulates hiPSCs proliferation. PCSK9 can interfere with the NODAL pathway by regulating the expression of its endogenous inhibitor DACT2, which is involved in transforming growth factor (TGF) ß-R1 lysosomal degradation. Using different PCSK9 constructs, we show that PCSK9 interacts with DACT2 through its Cys-His-rich domain (CHRD) domain. Altogether these data highlight a new role of PCSK9 in cellular proliferation and development.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Nodal/metabolismo , Pró-Proteína Convertase 9/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Mutação com Perda de Função , Proteína Nodal/genética , Fosforilação , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/genética , Ligação Proteica , Domínios Proteicos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad2/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...