Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Mar Pollut Bull ; 199: 116034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237244

RESUMO

Rare Earth Elements (REE) and several trace elements abundances in mussel's shells collected along the St. Lawrence River, the Estuary, and the Gulf of St. Lawrence (EGSL) reveal coherent chemical variations, with a sharp contrast between freshwater and seawater bivalves. In freshwater mussel's shells, Rare Earth Elements and Y (REY) patterns are rather flat. Their Mn and Ba concentrations are higher than those of EGSL mussel shells, which are much richer in Sr. Shale-normalized REY abundances in mussel's shells from the EGSL show positive anomalies in La and Y and well-marked negative anomalies in Ce, reflecting those of seawater. Prince Edward Island shells show light REE depletion relative to PAAS, positive La and Y anomalies, and negative Ce anomalies. Our data confirm the lack of detectable Gd pollution in the St. Lawrence River and in the EGSL, as well as Pb pollution at the mouth of the Saguenay Fjord and near Rimouski.


Assuntos
Bivalves , Metais Terras Raras , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Monitoramento Ambiental , Metais Terras Raras/análise , Canadá , Poluentes Químicos da Água/análise
3.
Chemosphere ; 308(Pt 1): 136186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36041518

RESUMO

We document for the first time, the spatial distribution at basin scale (North tropical Atlantic Ocean) of As, P and trace metal (TM) concentrations in the three morphotypes belonging to the two holopelagic species Sargassum natans and S. fluitans and three morphotypes: S. natans VIII, S. natans I and S. fluitans III. These samples collected in the North equatorial current (NEC) and in the subtropical Sargasso Sea (sSS) (∼25°N, 60°W) were also compared to coastal samples collected downwind Guadeloupe Island and on the strand of Martinique (mangrove and beach). Along the studied zonal oceanic transect, the highest values of As (range 120-240 µg g-1, dry weight, dw) were found in the sSS area where primary production is highly limited by phosphorus. At these stations, the P content of Sargassum spp. was minimal (range 500-1000 µg g-1, dw) as well as the content in Cd and Zn known for their nutrient-like oceanic behaviors and distributions very similar to P. This illustrates for the first time in the natural environment, the higher bioaccumulation of arsenic in Sargassum spp. in P-limiting conditions which is due to the competition in the phosphate transporter between arsenate and phosphate. As compared to samples collected at sea, the Sargassum spp. collected in the strand of Martinique had (1) lower As concentrations (typical range 30-45 µg g-1, dw) and (2) much higher Al, Fe, Mn, Cr and Co concentrations, showing a certain ability of Sargassum spp. to be depurated of its As content in the coastal zone following competitive exchange with terrigenous metals.


Assuntos
Arsênio , Sargassum , Oligoelementos , Arseniatos , Arsênio/análise , Oceano Atlântico , Cádmio , Proteínas de Transporte de Fosfato , Fosfatos , Fósforo
4.
Mar Pollut Bull ; 170: 112646, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34225197

RESUMO

Seagrass beds are increasingly impacted by human activities in coastal areas, particularly in tropical regions. The objective of this research program was to study seagrass beds characteristics under various environmental conditions in the French Antilles (FA, Caribbean Sea). A total of 61 parameters, from plant physiology to seagrass ecosystem, were tested along a gradient of anthropogenic conditions, distributed across 11 sites and 3 islands of the FA. A selection of 7 parameters was identified as relevant for the monitoring of seagrass meadows in the framework of public policies. They combined "early warning indicators" (e.g. nutrients and some trace metals) and long-term responding parameters (e.g. shoot density) adapted to management time scales. The ecological status of seagrass meadows was evaluated using a PCA. This work is a first step towards monitoring and management of seagrass meadows in the FA.


Assuntos
Ecossistema , Oligoelementos , Região do Caribe , Atividades Humanas , Humanos , Índias Ocidentais
5.
Talanta ; 219: 121244, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887135

RESUMO

The determination of rare earth elements (REEs) and Y in carbonates can be complicated by low REE abundances and the presence of significant amounts of Ba resulting in problematic interferences when analysed by ICP-MS. We describe here a novel ion-exchange method using the DGA resin (TODGA), combined with addition of a Tm spike, which allows the separation of the REEs+Y as a whole prior to analysis using an Element XR ICP-MS. This method was validated with results obtained on three different reference carbonate materials (CAL-S, JLs-1 and BEAN, an in-house standard), yielding reproducibility levels better than 3% (RSD) in most cases. This new separation scheme is particularly well suited for carbonate samples having very low REE contents, but could be equally applied to various rock types and organic-rich sample matrices whenever quantitative Ba removal is required.

6.
Chemosphere ; 217: 754-762, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448755

RESUMO

Subcellular cadmium (Cd) partitioning was investigated in the liver of two marine fish species, the European sea bass Dicentrarchus labrax and the Senegalese sole Solea senegalensis, dietary exposed to an environmentally realistic Cd dose for two months followed by a two-month depuration. The two species displayed different handling strategies during the depuration period. Cd was largely bound to detoxifying fractions such as heat stable proteins (HSP) including metallothioneins (MT) in sea bass, while Cd was more linked to sensitive fractions such as organelles in sole. Whole liver concentrations and subcellular partitioning were also determined for essential elements. The greatest impairment of essential metal homeostasis due to Cd exposure was found in sole. These elements followed the Cd partitioning pattern, suggesting that they are involved in antioxidant responses against Cd toxicity. Cd consumption diminished sole growth in terms of body weight, probably due to lipid storage impairment. The contrasting partitioning patterns showed by the two species might imply different pathways for Cd elimination from the liver. In sea bass, MT-bound Cd would be excreted through bile or released into blood, crossing the cell membrane via a protein transporter. In sole, MRG-bound Cd would be sequestered by organelles before being released into the blood via vesicular exocytosis. These distinct strategies in cellular Cd handling in the liver might account for differential sensitivity to Cd toxicity and differential Cd excretion pathways between the two marine fish species.


Assuntos
Bass/metabolismo , Cádmio/metabolismo , Linguados/metabolismo , Fígado/metabolismo , Animais , Cádmio/toxicidade , Inativação Metabólica , Metalotioneína , Metais/metabolismo , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
7.
Environ Pollut ; 236: 462-476, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414371

RESUMO

Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.


Assuntos
Bass/metabolismo , Linguados/metabolismo , Metalotioneína/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cádmio , Cinética , Fígado/metabolismo , Metais , Músculos/metabolismo
8.
Sci Total Environ ; 573: 83-95, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27552732

RESUMO

The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology.


Assuntos
Monitoramento Ambiental/métodos , Ácidos Graxos/metabolismo , Peixes/metabolismo , Metais/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Dieta , Cadeia Alimentar , Isótopos/análise , Fígado/metabolismo , Metais/análise , Músculos/metabolismo , Senegal , Especificidade da Espécie , Poluentes Químicos da Água/análise
9.
Rapid Commun Mass Spectrom ; 29(19): 1795-804, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26331930

RESUMO

RATIONALE: Understanding the fate of metals in agricultural land is an important issue for agronomic sustainability. This study aimed at quantifying the export/retention of metals in a temperate watershed subject to important manuring activities. METHODS: The chemical composition of the Penzé stream was examined at high resolution during a 1-year study in 2012. After immediate on-site filtration, here demonstrated as necessary to avoid modification of the dissolved-particulate partition, the concentrations of 21 elements were determined using inductively coupled plasma (ICP) optical emission spectrometry and ICP mass spectrometry. This dataset was extended with the local atmospheric deposition of several metals (Cd, Cr, Cu, Pb, Ni and Zn) monitored on a monthly basis. RESULTS: Two groups were distinguished according to the evolution of the concentrations during floods. Some major cations (Na, Ca, Mg, Sr, K, Ba) and nitrate followed counter-clockwise hysteresis patterns originating from the dilution of the enriched groundwaters by surface waters. Conversely, Al, Fe, Mn, Ti, V, Cr, Co, Ni, Cu, Zn, Cd, Pb and U displayed high dissolved concentration increases at the early stage of floods due to washing out of the enriched soils. CONCLUSIONS: The comparison of stream output fluxes for the two main inputs for the watershed, i.e. atmospheric deposition and manure spreading, indicates that the vast majority of the Cu and Zn (>99 and 96%, respectively), mainly originating from pig manure, is accumulated in the watershed. The accumulation rates for other metals were >60% for Ni and Cr, >75% for As and >90% for Pb and Cd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA