Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(10): 392, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177675

RESUMO

Coal is an essential component in achieving the goal of fulfilling the energy demands of the world. Nevertheless, the extensive practice of coal mining has resulted in environmental contamination through the release of both organic and inorganic pollutants, including polycyclic aromatic compounds and potentially toxic elements, into various mediums, notably soil. The escalating coal-mining activities across Europe have amplified the concentration of specific elements in the soil. Therefore, a thorough and meticulous assessment of these environmental impacts is imperative to furnish policymakers, industries, and communities with valuable insights, facilitating the formulation and adoption of effective mitigation strategies. Considering the results of studies from 2018 to 2023, this review thoroughly evaluates the current state of soil pollution in the coal mining areas of Europe, focusing on polycyclic aromatic hydrocarbons and potentially toxic elements. By analyzing the acquired data, this study aims to evaluate the levels of contamination by these pollutants in soils. The findings reveal that low molecular weight polycyclic aromatic hydrocarbons dominate the polycyclic aromatic compounds present, while potentially toxic elements including Zn, Pb, Mn, and Cr emerge as major contributors to soil contamination in coal mining areas from Europe.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluentes do Solo/análise , Europa (Continente) , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição Ambiental/análise , Solo/química , Metais Pesados/análise
2.
Materials (Basel) ; 16(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068085

RESUMO

Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.

3.
Environ Geochem Health ; 45(11): 7459-7490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501044

RESUMO

Coal mining activities are causing an extensive range of environmental issues at both operating and abandoned mine sites. It is one of the most environmentally destructive practices, with the capability to eliminate fauna and flora, impact the groundwater system, and pollute the soil, air, and water. The Czech Republic relies almost exclusively on coal as its primary domestic source of energy. The combined reserves of hard and brown coals in this country are 705 million tons. About 50 million tons of coal is produced annually, making it the 14th biggest producer in the world. Soil degradation is an inevitable outcome of the coal production from surface coal mining procedures in the Czech Republic. Significant changes have taken place in soil productivity, hydraulic characteristics, horizon, and texture as a result of soil pollution, bioturbation, compaction, and weathering. The current review has evaluated the impact of reclamation and coal mining on soil characteristics, including biological, chemical, and physical properties. Additionally, the study has outlined the process of soil formation in reclamation areas in the Czech Republic. In nutshell, research gaps and future directions in understanding coal mining areas and their influences on soils in the Czech Republic are identified.


Assuntos
Minas de Carvão , Poluentes do Solo , Solo/química , República Tcheca , Monitoramento Ambiental/métodos , Carvão Mineral/análise , Mineração , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA