Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7729, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382099

RESUMO

Grass endophytes have been shown to confer enhanced environmental resilience to symbiont cultivars with reports of modified growth. If inoculating with an endophyte (E+) made an accession morphologically distinct from its registered endophyte free (E-) accession, there could be protection and ownership issues for testing authorities and breeders. This study investigated if, in official Plant Breeders Rights (PBR) field trials, the morphological characteristics of E+and E- accessions of perennial ryegrass and tall fescue cultivars were sufficiently modified to designate them as mutually distinct and also distinct from their definitive accessions (Def), held by the testing authorities. Testing perennial ryegrass on 17 characters at 2 sites generated 48,960 observations and for tall fescue on 9 characters at 1 site, 12,960 observations (each for 3 accessions of 4 cultivars × 60 plants × 2 growing cycles). Distinctness required a p < 0.01 difference in a single character from the combined over years analysis (COYD). A few significant differences were recorded between E- and E+accessions. Cultivar Carn E+ was smaller than Carn E- for Infloresence Length (p < 0.01) in both years but COYD analysis (p < 0.05) was insufficient to declare distinctiveness. Overall, the number of observed differences between E-/E+ accessions was less or similar to the number expected purely by chance. In contrast, comparisons between Def and E- or E+ accessions showed a number of significant differences that were substantially more numerous than expected by chance. These results showed no conclusive evidence of endophyte inclusion creating false PBR distinctions but unexpectedly, several E- and E+ accessions were distinguished from their official definitive stock.


Assuntos
Endófitos/crescimento & desenvolvimento , Festuca/crescimento & desenvolvimento , Lolium/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Cruzamento , Poaceae/crescimento & desenvolvimento , Simbiose/genética
2.
Mycologia ; 112(3): 474-490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32412888

RESUMO

Many efforts have been made to select and isolate naturally occurring animal-friendly Epichloë strains for later reinfection into elite cultivars. Often this process involves large-scale screening of Epichloë-infected wild grass populations where strains are characterized and alkaloids measured. Here, we describe for the first time the use of genotyping-by-sequencing (GBS) on a collection of 217 Epichloë-infected grasses (7 S. arundinaceum, 4 L. perenne, and 206 S. pratensis). This genotyping strategy is cheaper than complete genome sequencing, is suitable for a large number of individuals, and, when applied to endophyte-infected grasses, conveniently genotypes both organisms. In total, 6273 single nucleotide polymorphisms (SNPs) in the endophyte data set and 38 323 SNPs in the host data set were obtained. Our findings reveal a composite structure with three distinct endophyte clusters unrelated to the three main S. pratensis gene pools that have most likely spread from different glacial refugia in Eurasia. All three gene pools can establish symbiosis with E. uncinata. A comparison of the endophyte clusters with microsatellite-based fingerprinting of the same samples allows a quick test to discriminate between these clusters using two simple sequence repeats (SSRs). Concentrations of loline alkaloids and mycelial biomass are correlated and differ significantly among the plant and endophyte subpopulations; one endophyte strain has higher levels of lolines than others, and one specific host genotype is particularly suitable to host E. uncinata. These findings pave the way for targeted artificial inoculations of specific host-endophyte combinations to boost loline production in the symbiota and for genome association studies with the aim of isolating genes involved in the compatibility between meadow fescue and E. uncinata.


Assuntos
Endófitos/genética , Endófitos/fisiologia , Epichloe/química , Epichloe/genética , Epichloe/metabolismo , Festuca/fisiologia , Lolium/fisiologia , Alcaloides/análise , Festuca/química , Festuca/microbiologia , Técnicas de Genotipagem , Lolium/química , Lolium/microbiologia , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA