Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
3.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803613

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation. METHODS: In this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered. RESULTS: We first demonstrated that IL-1RAP CAR T-cells can be produced from AML T-cells at the time of diagnosis and at relapse. In vitro and in vivo, we showed the effectiveness of IL-1RAP CAR T-cells against AML cell lines expressing different levels of IL-1RAP and the cytotoxicity of autologous IL-1RAP CAR T-cells against primary cells from patients with AML at diagnosis or at relapse. In patient-derived relapsed AML xenograft models, we confirmed that IL-1RAP CAR T-cells are able to circulate in peripheral blood and to migrate in the bone marrow and spleen, are cytotoxic against primary AML cells and increased overall survival. CONCLUSION: In conclusion, our preclinical results suggest that IL-1RAP CAR T-based adoptive therapy could be a promising strategy in AML treatment and it warrants the clinical investigation of this CAR T-cell therapy.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoterapia , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/terapia , Recidiva , Linfócitos T
4.
Oncol Ther ; 10(1): 75-84, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35129793

RESUMO

We report a case of donor-derived leukemia (DDL) occurring 34 months after double-unit cord blood transplantation (CBT). Molecular analysis using short tandem repeat (STR) sequences proved the acute myeloid leukemia (AML) to be of dominant cord blood origin. Karyotype was normal and molecular analysis showed WT1 and EVI1 overexpression. Cytological and molecular remission were achieved with only induction and consolidation chemotherapy. Relapse occurred after 6 years of remission from one clone with only WT1 overexpression. Potential etiologies for donor cell leukemogenesis in the recipient are discussed, including occult leukemia in the donor or genetic predisposition to hematologic malignancies, impaired immune surveillance, induced or inherited stromal abnormalities, transformation of donor cells during engraftment via altered signals of the host tissues, and fusion of donor cells with residual leukemic cells leading to acquisition of oncogenes. Although cases of DDL occurring after umbilical CBT have already been reported, very few cases have been described arising after double-unit CBT. DDL cases following CBT previously described in the literature have been reviewed.

5.
Hemasphere ; 6(1): e676, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964040

RESUMO

Measurable residual disease (MRD) quantified by multiparameter flow cytometry (MFC) is a strong and independent prognostic factor in acute myeloid leukemia (AML). However, several technical factors may affect the final read-out of the assay. Experts from the MRD Working Party of the European LeukemiaNet evaluated which aspects are crucial for accurate MFC-MRD measurement. Here, we report on the agreement, obtained via a combination of a cross-sectional questionnaire, live discussions, and a Delphi poll. The recommendations consist of several key issues from bone marrow sampling to final laboratory reporting to ensure quality and reproducibility of results. Furthermore, the experiences were tested by comparing two 8-color MRD panels in multiple laboratories. The results presented here underscore the feasibility and the utility of a harmonized theoretical and practical MFC-MRD assessment and are a next step toward further harmonization.

6.
Blood ; 138(26): 2753-2767, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34724563

RESUMO

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.


Assuntos
Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Europa (Continente) , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucemia Mieloide Aguda/genética , Neoplasia Residual/genética , Prognóstico
8.
Blood Adv ; 5(5): 1540-1551, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687433

RESUMO

Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.


Assuntos
Transtornos Mieloproliferativos , Transcriptoma , Carcinogênese , Células Dendríticas , Genômica , Humanos , Lectinas Tipo C , Glicoproteínas de Membrana , Receptores Imunológicos , Fatores de Transcrição SOXC
9.
Haematologica ; 106(12): 3056-3066, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054115

RESUMO

Neoplasms involving plasmacytoid Dendritic Cells (pDCs) include Blastic pDC Neoplasms (BPDCN) and other pDC proliferations, where pDCs are associated with myeloid malignancies: most frequently Chronic MyeloMonocytic Leukemia (CMML) but also Acute Myeloid Leukemia (AML), hereafter named pDC-AML. We aimed to determine the reactive or neoplastic origin of pDCs in pDC-AML, and their link with the CD34+ blasts, monocytes or conventional DCs (cDCs) associated in the same sample, by phenotypic and molecular analyses (targeted NGS, 70 genes). We compared 15 pDC-AML at diagnosis with 21 BPDCN and 11 normal pDCs from healthy donors. CD45low CD34+ blasts were found in all cases (10-80% of medullar cells), associated with pDCs (4-36%), monocytes in 14 cases (1-10%) and cDCs (2 cases, 4.8-19%). pDCs in pDC-AML harbor a clearly different phenotype from BPDCN: CD4+ CD56- in 100% of cases, most frequently CD303+, CD304+ and CD34+; lower expression of cTCL1 and CD123 with isolated lymphoid markers (CD22/CD7/CD5) in some cases, suggesting a pre-pDC stage. In all cases, pDCs, monocytes and cDC are neoplastic since they harbor the same mutations as CD34+ blasts. RUNX1 is the most commonly mutated gene: detected in all AML with minimal differentiation (M0-AML) but not in the other cases. Despite low number of cases, the systematic association between M0-AML, RUNX1 mutations and an excess of pDC is puzzling. Further evaluation in a larger cohort is required to confirm RUNX1 mutations in pDC-AML with minimal differentiation and to investigate whether it represents a proliferation of blasts with macrophage and DC progenitor potential.


Assuntos
Células Dendríticas , Leucemia Mieloide Aguda , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Fenótipo
10.
Leukemia ; 35(3): 724-736, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32655144

RESUMO

Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a-CD7- subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.


Assuntos
Biomarcadores Tumorais/genética , Diferenciação Celular , Leucemia Aguda Bifenotípica/mortalidade , Leucemia Mieloide Aguda/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Transcriptoma , Biologia Computacional , Humanos , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Taxa de Sobrevida
11.
Leukemia ; 34(12): 3228-3241, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32111969

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is associated with a remarkably poor prognosis and with no treatment consensus. The identification of relevant therapeutic targets is challenging. Here, we investigated the immune functions, antileukemia efficacy and safety of CD28/4-1BB CAR T cells targeting CD123 the interleukin (IL)-3 receptor alpha chain which is overexpressed on BPDCN. We demonstrated that both retroviral and lentiviral engineering CD28/4-1BB CD123 CAR T cells exhibit effector functions against BPDCN cells through CD123 antigen recognition and that they efficiently kill BPDCN cell lines and BPDCN-derived PDX cells. In vivo, CD28/4-1BB CD123 CAR T-cell therapy displayed strong efficacy by promoting a decrease of BPDCN blast burden. Furthermore we showed that T cells from BPDCN patient transduced with CD28/4-1BB CD123 CAR successfully eliminate autologous BPDCN blasts in vitro. Finally, we demonstrated in humanized mouse models that these effector CAR T cells exert low or no cytotoxicity against various subsets of normal cells with low CD123 expression, indicating a potentially low on-target/off-tumor toxicity effect. Collectively, our data support the further evaluation for clinical assessment of CD28/4-1BB CD123 CAR T cells in BPDCN neoplasm.


Assuntos
Antígenos CD28/imunologia , Células Dendríticas/imunologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Células HL-60 , Neoplasias Hematológicas/imunologia , Humanos , Imunoterapia Adotiva/métodos , Camundongos
12.
Blood Adv ; 3(24): 4238-4251, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31869411

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia for which we developed a nationwide network to collect data from new cases diagnosed in France. In a retrospective, observational study of 86 patients (2000-2013), we described clinical and biological data focusing on morphologies and immunophenotype. We found expression of markers associated with plasmacytoid dendritic cell origin (HLA-DRhigh, CD303+, CD304+, and cTCL1+) plus CD4 and CD56 and frequent expression of isolated markers from the myeloid, B-, and T-lymphoid lineages, whereas specific markers (myeloperoxidase, CD14, cCD3, CD19, and cCD22) were not expressed. Fifty-one percent of cytogenetic abnormalities impact chromosomes 13, 12, 9, and 15. Myelemia was associated with an adverse prognosis. We categorized chemotherapeutic regimens into 5 groups: acute myeloid leukemia (AML)-like, acute lymphoid leukemia (ALL)-like, lymphoma (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP])-like, high-dose methotrexate with asparaginase (Aspa-MTX) chemotherapies, and not otherwise specified (NOS) treatments. Thirty patients received allogeneic hematopoietic cell transplantation (allo-HCT), and 4 patients received autologous hematopoietic cell transplantation. There was no difference in survival between patients receiving AML-like, ALL-like, or Aspa-MTX regimens; survival was longer in patients who received AML-like, ALL-like, or Aspa-MTX regimens than in those who received CHOP-like regimens or NOS. Eleven patients are in persistent complete remission after allo-HCT with a median survival of 49 months vs 8 for other patients. Our series confirms a high response rate with a lower toxicity profile with the Aspa-MTX regimen, offering the best chance of access to hematopoietic cell transplantation and a possible cure.


Assuntos
Células Dendríticas/patologia , Leucemia/diagnóstico , Leucemia/terapia , Doença Aguda , Biomarcadores , Contagem de Células Sanguíneas , Medula Óssea/patologia , Aberrações Cromossômicas , Evolução Clonal/genética , Células Dendríticas/metabolismo , Gerenciamento Clínico , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunofenotipagem , Leucemia/etiologia , Leucemia/metabolismo , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Resultado do Tratamento
13.
Cancers (Basel) ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500210

RESUMO

ABCB1 is a member of the ATP binding cassette transporter family and high ABCB1 activity is considered as a poor prognostic factor in acute myeloid leukemia (AML) treated with intensive chemotherapy, its direct relation with drug resistance remains unclear. We evaluated ABCB1 activity in relation with clinical parameters and treatment response to standard chemotherapy in 321 patients with de novo AML. We assessed multiple clinical relationships of ABCB1 activity-ex vivo drug resistance, gene expression, and the ABCB1 inhibitor quinine were evaluated. ABCB1 activity was observed in 58% of AML and was linked to low white blood cell count, high expression of CD34, absence of FLT3-ITD, and absence of mutant NPM1. Moreover, ABCB1 activity was associated with worse overall- and event-free survival. However, ABCB1 activity did not directly lead to ex vivo drug resistance to anthracyclines. We found that ABCB1 was highly correlated with gene expressions of BAALC, CD34, CD200, and CD7, indicating that ABCB1 expression maybe a passenger characteristic of high-risk AML. Furthermore, ABCB1 was inversely correlated to HOX cluster genes and CD33. Thus, low ABCB1 AML patients benefited specifically from anti-CD33 treatment by gemtuzumab ozogamicin in addition to standard chemotherapy. We showed prognostic importance of ABCB1 gene expression, protein expression, and activity. Furthermore, ABCB1 was not directly linked to drug resistance, ABCB1 inhibition did not improve outcome of high ABCB1 AML patients and thus high ABCB1 may represent a passenger characteristic of high-risk AML.

14.
Cancer Med ; 8(3): 1279-1288, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30740913

RESUMO

CD9 is a cell surface protein and belongs to the tetraspanin family. Its role in carcinomagenesis has been widely studied in solid tumors but remains controversial, depending on the cancer type. Although CD9 seems to be associated with unfavorable outcome and disease progression in acute lymphoblastic leukemia (ALL), this marker has not yet been studied in acute myeloid leukemia (AML). First, we explored its prognostic role and its association with biological factors in a cohort of 112 AML patients treated with intensive chemotherapy. CD9 was expressed in 40% of AML and was associated with a favorable outcome (event-free survival and relapse-free survival) in univariate (P = 0.009 and P = 0.048, respectively) and multivariate (P = 0.004 and P = 0.039, respectively) analyses. Interestingly, CD9 expression was different between the more immature physiologic and AML cells (CD34+CD38-) as it was also expressed in AML on putative leukemic stem cells (LSCs) but not on hematopoietic stem cells (HSCs). Hence, CD9 could be a very relevant marker for minimal residual disease (MRD) monitoring in AML based on LSC targeting.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tetraspanina 29/metabolismo , Adulto , Idoso , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Neoplasia Residual/patologia , Prognóstico , Análise de Sobrevida , Tetraspanina 29/genética , Adulto Jovem
16.
J Vis Exp ; (133)2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29630051

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous, and if not treated, fatal disease. It is the most common cause of leukemia-associated mortality in adults. Initially, AML is a disease of hematopoietic stem cells (HSC) characterized by arrest of differentiation, subsequent accumulation of leukemia blast cells, and reduced production of functional hematopoietic elements. Heterogeneity extends to the presence of leukemia stem cells (LSC), with this dynamic cell compartment evolving to overcome various selection pressures imposed upon during leukemia progression and treatment. To further define the LSC population, the addition of CD90 and CD45RA allows the discrimination of normal HSCs and multipotent progenitors within the CD34+CD38- cell compartment. Here, we outline a protocol to detect simultaneous expression of several putative LSC markers (CD34, CD38, CD45RA, CD90) on primary blast cells of human AML by multiparametric flow cytometry. Furthermore, we show how to quantify three progenitor populations and a putative LSC population with increasing degree of maturation. We confirmed the presence of these populations in corresponding patient-derived-xenografts. This method of detection and quantification of putative LSC may be used for clinical follow-up of chemotherapy response (i.e., minimal residual disease), as residual LSC may cause AML relapse.


Assuntos
Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/diagnóstico , Células-Tronco Neoplásicas/metabolismo , Adulto , Animais , Seguimentos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Células-Tronco Neoplásicas/patologia
17.
Oncotarget ; 9(5): 6478-6489, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464086

RESUMO

Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.

18.
Oncotarget ; 8(34): 57451-57459, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28924457

RESUMO

Approximately 30% of the patients who fulfil the criteria of Waldenström's macroglobulinemia (WM) are diagnosed while asymptomatic (indolent), and will not require immediate therapy. Conversely, patients with a disease-related event will be considered for therapy. The physiopathology of these 2 groups remains unclear, and the mechanisms of progression from indolent to symptomatic WM have yet to be fully understood. Seventeen patients diagnosed with WM were included in this study, 8 asymptomatic WM (A-WM) and 9 symptomatic WM (S-WM). A differential analysis was performed on a first series of 11 patients and identified 48 genes whose expression separated samples from A- to S-WM. This gene signature was then confirmed on a second independent validation set of 6 WM. Within this expression profile, BACH2, a B-cell transcription factor known to be a tumor suppressor gene, was found to be over-expressed in A-MW relatively to S-MW. We specifically over-expressed BACH2 in a WM-related cell line and observed a significant reduction of the clonogenic activity. To the best of our knowledge, we report for the first time a specific gene expression signature that differentiates A-WM and S-WM. Within this expression profile, BACH2 was identified as a candidate gene that may help to understand better the behavior of tumor cells in indolent WM.

19.
Clin Cancer Res ; 23(20): 6325-6335, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754818

RESUMO

Purpose:TP53 is a tumor-suppressor gene that functions as a regulator influencing cellular responses to DNA damage, and TP53 alterations are associated with pejorative outcome in most B-lymphoid disorders. Little is known regarding TP53 alteration in Waldenstrom's macroglobulinemia (WM).Experimental Design: Here, we have explored the incidence of TP53 alteration using Sanger sequencing and ultradeep-targeted sequencing in 125 WM and 10 immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS), along with the clinical features and the associated genomic landscape using single-nucleotide polymorphism array and mutational landscape in an integrative study.Results: Overall, we have identified alteration of TP53 locus including mutation, deletion, and copy-neutral LOH in 11.2% of WM. TP53 mutation was acquired in 7.3% of patients with WM at diagnosis, being absent in IgM MGUS, and was highly correlated to deletion 17p. No correlation with CXCR4 mutations was observed. Patients with TP53 alteration had a greater number of genomic abnormalities. Importantly, WM with TP53 alteration had a significantly shorter overall survival, particularly in symptomatic WM, and independently of the international prognostic scoring system for Waldenstrom macroglobulinemia (IPSSWM) score. Specific treatment for WM with TP53 may have to be studied. Nutlin-3a-targeted p53 signaling induced cytotoxicity preclinically, along with new compounds such as ibrutinib, PrimaMet, or CP31398 that bypass p53 pathway in WM, paving the path for future treatment-tailored options.Conclusions: Our results highlight the clinical significance of detection of TP53 alteration in WM to determine the prognosis of WM and guide the treatment choice. Clin Cancer Res; 23(20); 6325-35. ©2017 AACR.


Assuntos
Mutação , Proteína Supressora de Tumor p53/genética , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Sobrevivência Celular/genética , Deleção Cromossômica , Cromossomos Humanos Par 17 , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Análise de Sobrevida , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Macroglobulinemia de Waldenstrom/mortalidade
20.
Blood ; 128(23): 2694-2707, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27702801

RESUMO

Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Células Dendríticas/metabolismo , Receptores X do Fígado/agonistas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/patologia , Feminino , Humanos , Interleucina-3/metabolismo , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...