Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629041

RESUMO

One of the most prevalent causes of olfactory loss includes traumatic brain injury with subsequent shearing of olfactory axons at the level of the cribriform plate (anterior skull base). Scar tissue at this level may prevent axonal regrowth toward the olfactory bulb. Currently, there is no cure for this debilitating and often permanent condition. One promising therapeutic concept is to implant a synthetic scaffold with growth factors through the cribriform plate/scar tissue to induce neuroregeneration. The first step toward this goal is to investigate the optimum conditions (growth factors, extracellular matrix proteins) to boost this regeneration. However, the lack of a specifically tailored in vitro model and an automated procedure for quantifying axonal length limits our ability to address this issue. The aim of this study is to create an automated quantification tool to measure axonal length and to determine the ideal growth factors and extracellular proteins to enhance axonal regrowth of olfactory sensory neurons in a mouse organotypic 2D model. We harvested olfactory epithelium (OE) of C57BL/6 mice and cultured them during 15 days on coverslips coated with various extracellular matrix proteins (Fibronectin, Collagen IV, Laminin, none) and different growth factors: fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), retinoic acid (RA), transforming growth factor ß (TGFß), and none. We measured the attachment rate on coverslips, the presence of cellular and axonal outgrowth, and finally, the total axonal length with a newly developed automated high-throughput quantification tool. Whereas the coatings did not influence attachment and neuronal outgrowth rates, the total axonal length was enhanced on fibronectin and collagen IV (p = 0.001). The optimum growth factor supplementation media to culture OE compared to the control condition were as follows: FGF2 alone and FGF2 from day 0 to 7 followed by FGF2 in combination with NGF from day 7 to 15 (p < 0.0001). The automated quantification tool to measure axonal length outperformed the standard Neuron J application by reducing the average analysis time from 22 to 3 min per specimen. In conclusion, robust regeneration of murine olfactory neurons in vitro can be induced, controlled, and efficiently measured using an automated quantification tool. These results will help advance the therapeutic concept closer toward preclinical studies.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fibronectinas , Cicatriz , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Neural , Axônios , Proteínas da Matriz Extracelular , Colágeno Tipo IV , Meios de Cultura
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768339

RESUMO

Neurotrophins promote neurite outgrowth of auditory neurons and may help closing the gap to cochlear implant (CI) electrodes to enhance electrical hearing. The best concentrations and mix of neurotrophins for this nerve regrowth are unknown. Whether electrical stimulation (ES) during outgrowth is beneficial or may direct axons is another open question. Auditory neuron explant cultures of distinct cochlear turns of 6-7 days old mice were cultured for four days. We tested different concentrations and combinations of BDNF and NT-3 and quantified the numbers and lengths of neurites with an advanced automated analysis. A custom-made 24-well electrical stimulator based on two bulk CIs served to test different ES strategies. Quantification of receptors trkB, trkC, p75NTR, and histological analysis helped to analyze effects. We found 25 ng/mL BDNF to perform best, especially in basal neurons, a negative influence of NT-3 in combined BDNF/NT-3 scenarios, and tonotopic changes in trk and p75NTR receptor stainings. ES largely impeded neurite outgrowth and glia ensheathment in an amplitude-dependent way. Apical neurons showed slight benefits in neurite numbers and length with ES at 10 and 500 µA. We recommend BDNF as a potent drug to enhance the man-machine interface, but CIs should be better activated after nerve regrowth.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Implantes Cocleares , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Receptores de Fator de Crescimento Neural , Neuritos , Nervo Coclear , Estimulação Elétrica , Crescimento Neuronal , Neurotrofina 3
3.
Front Neurol ; 13: 993017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188374

RESUMO

The reactive oxygen species (ROS)-generating enzyme NOX3 has recently been implicated in the pathophysiology of several acquired forms of sensorineural hearing loss, including cisplatin-, noise- and age-related hearing loss. NOX3 is highly and specifically expressed in the inner ear and therefore represents an attractive target for specific intervention aiming at otoprotection. Despite the strong rationale to inhibit NOX3, there is currently no specific pharmacological inhibitor available. Molecular therapy may represent a powerful alternative. In this study, we developed and tested a collection of small interfering (si) RNA constructs to establish a proof of concept of NOX3 inhibition through local delivery in the mouse inner ear. The inhibitory potential of 10 different siRNA constructs was first assessed in three different cells lines expressing the NOX3 complex. Efficacy of the most promising siRNA construct to knock-down NOX3 was then further assessed in vivo, comparing middle ear delivery and direct intracochlear delivery through the posterior semi-circular canal. While hearing was completely preserved through the intervention, a significant downregulation of NOX3 expression in the mouse inner ear and particularly in the spiral ganglion area at clinically relevant levels (>60%) was observed 48 h after treatment. In contrast to successful intracochlear delivery, middle ear administration of siRNA failed to significantly inhibit Nox3 mRNA expression. In conclusion, intracochlear delivery of NOX3-siRNAs induces a robust temporal NOX3 downregulation, which could be of relevance to prevent predictable acute insults such as cisplatin chemotherapy-mediated ototoxicity and other forms of acquired hearing loss, including post-prevention of noise-induced hearing loss immediately after trauma. Successful translation of our concept into an eventual clinical use in humans will depend on the development of atraumatic and efficient delivery routes into the cochlea without a risk to induce hearing loss through the intervention.

4.
Cells ; 11(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954276

RESUMO

Hearing loss affects over 460 million people worldwide and is a major socioeconomic burden. Both genetic and environmental factors (i.e., noise overexposure, ototoxic drug treatment and ageing), promote the irreversible degeneration of cochlear hair cells and associated auditory neurons, leading to sensorineural hearing loss. In contrast to birds, fish and amphibians, the mammalian inner ear is virtually unable to regenerate due to the limited stemness of auditory progenitors, and no causal treatment is able to prevent or reverse hearing loss. As of today, a main limitation for the development of otoprotective or otoregenerative therapies is the lack of efficient preclinical models compatible with high-throughput screening of drug candidates. Currently, the research field mainly relies on primary organotypic inner ear cultures, resulting in high variability, low throughput, high associated costs and ethical concerns. We previously identified and characterized the phoenix auditory neuroprogenitors (ANPGs) as highly proliferative progenitor cells isolated from the A/J mouse cochlea. In the present study, we aim at identifying the signaling pathways responsible for the intrinsic high stemness of phoenix ANPGs. A transcriptomic comparison of traditionally low-stemness ANPGs, isolated from C57Bl/6 and A/J mice at early passages, and high-stemness phoenix ANPGs was performed, allowing the identification of several differentially expressed pathways. Based on differentially regulated pathways, we developed a reprogramming protocol to induce high stemness in presenescent ANPGs (i.e., from C57Bl6 mouse). The pharmacological combination of the WNT agonist (CHIR99021) and TGFß/Smad inhibitors (LDN193189 and SB431542) resulted in a dramatic increase in presenescent neurosphere growth, and the possibility to expand ANPGs is virtually limitless. As with the phoenix ANPGs, stemness-induced ANPGs could be frozen and thawed, enabling distribution to other laboratories. Importantly, even after 20 passages, stemness-induced ANPGs retained their ability to differentiate into electrophysiologically mature type I auditory neurons. Both stemness-induced and phoenix ANPGs resolve a main bottleneck in the field, allowing efficient, high-throughput, low-cost and 3R-compatible in vitro screening of otoprotective and otoregenerative drug candidates. This study may also add new perspectives to the field of inner ear regeneration.


Assuntos
Perda Auditiva , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta , Proteínas Wnt/metabolismo , Animais , Cóclea/metabolismo , Células Ciliadas Auditivas , Perda Auditiva/metabolismo , Humanos , Mamíferos , Camundongos , Neurônios , Fator de Crescimento Transformador beta/metabolismo
5.
Front Cell Dev Biol ; 10: 832314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273964

RESUMO

The reactive oxygen species (ROS)-generating NADPH oxidase NOX3 isoform is highly and specifically expressed in the inner ear. NOX3 is needed for normal vestibular development but NOX-derived ROS have also been implicated in the pathophysiology of sensorineural hearing loss. The role of NOX-derived ROS in noise-induced hearing loss, however, remains unclear and was addressed with the present study. Two different mouse strains, deficient in NOX3 or its critical subunit p22phox, were subjected to a single noise exposure of 2 h using an 8-16 kHz band noise at an intensity of 116-120 decibel sound pressure level. In the hours following noise exposure, there was a significant increase in cochlear mRNA expression of NOX3 in wild type animals. By using RNAscope in situ hybridization, NOX3 expression was primarily found in the Rosenthal canal area, colocalizing with auditory neurons. One day after the noise trauma, we observed a high frequency hearing loss in both knock-out mice, as well as their wild type littermates. At day seven after noise trauma however, NOX3 and p22phox knockout mice showed a significantly improved hearing recovery and a marked preservation of neurosensory cochlear structures compared to their wild type littermates. Based on these findings, an active role of NOX3 in the pathophysiology of noise-induced hearing loss can be demonstrated, in line with recent evidence obtained in other forms of acquired hearing loss. The present data demonstrates that the absence of functional NOX3 enhances the hearing recovery phase following noise trauma. This opens an interesting clinical window for pharmacological or molecular intervention aiming at post prevention of noise-induced hearing loss.

6.
Hear Res ; 414: 108391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844170

RESUMO

Auditory neurons connect the sensory hair cells from the inner ear to the brainstem. These bipolar neurons are relevant targets for pharmacological intervention aiming at protecting or improving the hearing function in various forms of sensorineural hearing loss. In the research laboratory, neurotrophic compounds are commonly used to improve survival and to promote regeneration of auditory neurons. One important roadblock delaying eventual clinical applications of these strategies in humans is the lack of powerful in vitro models allowing high throughput screening of otoprotective and regenerative compounds. The recently discovered auditory neuroprogenitors (ANPGs) derived from the A/J mouse with an unprecedented capacity to self-renew and to provide mature auditory neurons offer the possibility to overcome this bottleneck. In the present study, we further characterized the new phoenix ANPGs model and compared it to the current gold-standard spiral ganglion organotypic explant (SGE) model to assay neurite outgrowth, neurite length and glutamate-induced Ca2+ response in response to neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF) treatment. Whereas both, SGEs and phoenix ANPGs exhibited a robust and sensitive response to neurotrophins, the phoenix ANPGs offer a considerable range of advantages including high throughput suitability, lower experimental variability, single cell resolution and an important reduction of animal numbers. The phoenix ANPGs in vitro model therefore provides a robust high-throughput platform to screen for otoprotective and regenerative neurotrophic compounds in line with 3R principles and is of interest for the field of auditory neuroscience.


Assuntos
Ensaios de Triagem em Larga Escala , Gânglio Espiral da Cóclea , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Ciliadas Auditivas , Camundongos , Neuritos/metabolismo , Neurônios/fisiologia
7.
J Neurosci Methods ; 363: 109341, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474047

RESUMO

BACKGROUND: Neuronal outgrowth assays using organotypic explant cultures are commonly utilized to study neuroregenerative and -protective effects of drugs such as neurotrophins. While this approach offers higher organized tissue compared to single cell cultures and less experimental effort than in-vivo studies, quantitative evaluation of the neuronal network is often time consuming. Thus, we developed ExplantAnlayzer, a time-saving high-throughput evaluation method, yielding numerous metrics to objectively describe neuronal outgrowth. NEW METHOD: Spiral ganglion explants were cultured in 24-well plates, mechanically fixed in a collagen matrix and immunolabeled against beta-III-tubulin. The explants were imaged using a fluorescent tile-scan microscope and resulting images were stitched. The evaluation was developed as an open-source MATLAB routine and involves several image processing steps, including adaptive thresholding. The neurite network was eventually converted to a graph to track neurites from their terminals back to the explant body. COMPARISON WITH EXISTING METHOD(S): We compared ExplantAnlayzer quantitatively and qualitatively to common existing methods, such as Sholl analyses and manual fiber tracing, using representative explant images. ExplantAnlayzer is able to achieve similar and as detailed results as manual tracing while decreasing manual interaction and required time dramatically. RESULTS: After an initial setup phase, the explant images could be batch-processed altogether. Bright bundles as well as faint fibers were reliably detected. Several metrics describing the outgrowth morphology, including total outgrowth, neurite numbers and length estimations, as well as their growth directions, were computed. CONCLUSIONS: ExplantAnalyzer is a time-saving and objective method for an in-depth evaluation of organotypic explant outgrowth.


Assuntos
Crescimento Neuronal , Neurônios , Células Cultivadas , Fatores de Crescimento Neural , Neuritos
8.
Front Cell Neurosci ; 15: 701783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335192

RESUMO

Cisplatin is a lifesaving chemotherapeutic drug with marked ototoxic adverse effects. Cisplatin-induced hearing loss affects a significant part of cancer-surviving patients and is an unmet clinical need with important socioeconomic consequences. Unfortunately, in current preclinical animal models of cisplatin ototoxicity, which are mainly based on systemic delivery, important morbidity is observed, leading to premature death. This methodology not only raises obvious animal welfare concerns but also increases the number of animals used in ototoxicity studies to compensate for dropouts related to early death. To overcome these important limitations, we developed a local delivery model based on the application of a cisplatin solution directly into the otic bulla through a retroauricular approach. The local delivery model reliably induced significant hearing loss with a mean threshold shift ranging from 10 to 30 dB, strongly affecting the high frequencies (22 and 32 kHz). Importantly, mice did not show visible stress or distress indicators and no significant morbidity in comparison with a traditional systemic delivery control group of mice injected intraperitoneally with 10 mg/kg cisplatin, where significant weight loss >10% in all treated animals (without any recovery) led to premature abortion of experiments on day 3. Mass spectrometry confirmed the absence of relevant systemic uptake after local delivery, with platinum accumulation restricted to the cochlea, whereas important platinum concentrations were detected in the liver and kidney of the systemic cisplatin group. A clear correlation between the cochlear platinum concentration and the auditory threshold shift was observed. Immunohistochemistry revealed statistically significant loss of outer hair cells in the basal and apical turns of the cochlea and an important and statistically significant loss of auditory neurons and synapses in all cochlear regions. In conclusion, local cisplatin delivery induces robust hearing loss with minimal morbidity, thereby offering a reliable rodent model for human cisplatin ototoxicity, reducing the number of animals required and showing improved animal welfare compared with traditional systemic models.

9.
Front Cell Neurosci ; 14: 395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362466

RESUMO

Nearly 460 million individuals are affected by sensorineural hearing loss (SNHL), one of the most common human sensory disorders. In mammals, hearing loss is permanent due to the lack of efficient regenerative capacity of the sensory epithelia and spiral ganglion neurons (SGN). Sphere-forming progenitor cells can be isolated from the mammalian inner ear and give rise to inner ear specific cell types in vitro. However, the self-renewing capacities of auditory progenitor cells from the sensory and neuronal compartment are limited to few passages, even after adding powerful growth factor cocktails. Here, we provide phenotypical and functional characterization of a new pool of auditory progenitors as sustainable source for sphere-derived auditory neurons. The so-called phoenix auditory neuroprogenitors, isolated from the A/J mouse spiral ganglion, exhibit robust intrinsic self-renewal properties beyond 40 passages. At any passage or freezing-thawing cycle, phoenix spheres can be efficiently differentiated into mature spiral ganglion cells by withdrawing growth factors. The differentiated cells express both neuronal and glial cell phenotypic markers and exhibit similar functional properties as mouse spiral ganglion primary explants and human sphere-derived spiral ganglion cells. In contrast to other rodent models aiming at sustained production of auditory neurons, no genetic transformation of the progenitors is needed. Phoenix spheres therefore represent an interesting starting point to further investigate self-renewal in the mammalian inner ear, which is still far from any clinical application. In the meantime, phoenix spheres already offer an unlimited source of mammalian auditory neurons for high-throughput screens while substantially reducing the numbers of animals needed.

10.
Brain Sci ; 10(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839381

RESUMO

BACKGROUND: The spatial gap between cochlear implants (CIs) and the auditory nerve limits frequency selectivity as large populations of spiral ganglion neurons (SGNs) are electrically stimulated synchronously. To improve CI performance, a possible strategy is to promote neurite outgrowth toward the CI, thereby allowing a discrete stimulation of small SGN subpopulations. Brain-derived neurotrophic factor (BDNF) is effective to stimulate neurite outgrowth from SGNs. METHOD: TrkB (tropomyosin receptor kinase B) agonists, BDNF, and five known small-molecule BDNF mimetics were tested for their efficacy in stimulating neurite outgrowth in postnatal SGN explants. To modulate Trk receptor-mediated effects, TrkB and TrkC ligands were scavenged by an excess of recombinant receptor proteins. The pan-Trk inhibitor K252a was used to block Trk receptor actions. RESULTS: THF (7,8,3'-trihydroxyflavone) partly reproduced the BDNF effect in postnatal day 7 (P7) mouse cochlear spiral ganglion explants (SGEs), but failed to show effectiveness in P4 SGEs. During the same postnatal period, spontaneous and BDNF-stimulated neurite outgrowth increased. The increased neurite outgrowth in P7 SGEs was not caused by the TrkB/TrkC ligands, BDNF and neurotrophin-3 (NT-3). CONCLUSIONS: The age-dependency of induction of neurite outgrowth in SGEs was very likely dependent on presently unidentified factors and/or molecular mechanisms which may also be decisive for the age-dependent efficacy of the small-molecule TrkB receptor agonist THF.

11.
Redox Biol ; 30: 101434, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32000019

RESUMO

Age-related hearing (ARHL) loss affects a large part of the human population with a major impact on our aging societies. Yet, underlying mechanisms are not understood, and no validated therapy or prevention exists. NADPH oxidases (NOX), are important sources of reactive oxygen species (ROS) in the cochlea and might therefore be involved in the pathogenesis of ARHL. Here we investigate ARHL in a mouse model. Wild type mice showed early loss of hearing and cochlear integrity, while animals deficient in the NOX subunit p22phox remained unaffected up to six months. Genes of the excitatory pathway were down-regulated in p22phox-deficient auditory neurons. Our results demonstrate that NOX activity leads to upregulation of genes of the excitatory pathway, to excitotoxic cochlear damage, and ultimately to ARHL. In the absence of functional NOXs, aging mice conserve hearing and cochlear morphology. Our study offers new insights into pathomechanisms and future therapeutic targets of ARHL.


Assuntos
Redes Reguladoras de Genes , Células Ciliadas Auditivas/citologia , NADPH Oxidases/genética , Presbiacusia/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/metabolismo , Humanos , Masculino , Camundongos , Oxirredução , Presbiacusia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
12.
Biochem Biophys Res Commun ; 521(2): 383-388, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668924

RESUMO

The NADPH oxidase Nox4 is a multi-pass membrane protein responsible for the generation of reactive oxygen species that are implicated in cellular signaling but may also cause pathological situations when dysregulated. Although topological organization of integral membrane protein dictates its function, only limited experimental data describing Nox4's topology are available. To provide deeper insight on Nox4 structural organization, we developed a novel method to determinate membrane protein topology in their cellular environment, named Topological Determination by Ubiquitin Fusion Assay (ToDUFA). It is based on the proteolytic capacity of the deubiquitinase enzymes to process ubiquitin fusion proteins. This straightforward method, validated on two well-known protein's topologies (IL1RI and Nox2), allowed us to discriminate rapidly the topological orientation of protein's domains facing either the nucleocytosolic or the exterior/luminal compartments. Using this method, we were able for the first time to determine experimentally the topology of Nox4 which consists of 6 transmembrane domains with its N- and C-terminus moieties facing the cytosol. While the first, third and fifth loops of Nox4 protein are extracellular; the second and fourth loops are located in the cytosolic side. This approach can be easily extended to characterize the topology of all others members of the NADPH oxidase family or any multi-pass membrane proteins. Considering the importance of protein topology knowledge in cell biology research and pharmacological development, we believe that this novel method will represent a widely useful technique to easily uncover complex membrane protein's topology.


Assuntos
Proteínas de Membrana/química , NADPH Oxidase 4/química , Animais , Membrana Celular/metabolismo , Citosol , Enzimas Desubiquitinantes/metabolismo , Humanos , Métodos , Domínios Proteicos , Estrutura Terciária de Proteína , Proteólise , Ubiquitina/metabolismo
13.
Otol Neurotol ; 40(7): e739-e746, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31295207

RESUMO

HYPOTHESIS AND BACKGROUND: The clinical treatment of sudden sensorineural hearing loss currently relies on the administration of steroids, either systemically or via intratympanic injections. Intratympanic injections bypass the hemato-cochlear barrier, reducing its systemic side effects. The efficacy of the injections is limited through rapid drug clearance via the Eustachian tube, and through nonoptimal properties of slow-release drug carriers. A new slow-release drug delivery vehicle based on hexyl-substituted-poly-lactic-acid (HexPLA), with the highest possible safety profile and complete bio-degradability, has been evaluated for safety and efficacy in a standardized guinea pig model of intratympanic injection. METHODS: A total of 83 animals received through retrobullar injection either empty Nile-red-colored HexPLA vehicle, 5%-dexamethasone-HexPLA, 5%-dexamethasone suspension, or a sham operation. Long-term residence time of vehicle, biocompatibility, click- and pure-tone hearing thresholds, and dexamethasone levels in the perilymph were prospectively assessed. RESULTS: At 1 week after injection, HexPLA vehicle was morphologically present in the middle ear and perilymph levels in the 5%-dexamethasone-HexPLA were on average 2 to 3 µg/ml and one order of magnitude higher compared with those of the 5%-dexamethasone suspension group. No significant postoperative morphological or functional changes were observed up to 3 months postdelivery. CONCLUSIONS: HexPLA is safe, fully biocompatible, and efficient for sustained high-dose, intratympanic delivery of dexamethasone at least for 1 week and therefore of high interest for the treatment of sudden sensorineural hearing loss and other acute inner ear diseases. Due to the favorable chemical properties, a wide range of other drugs can be loaded into the vehicle further increasing its potential value for otological applications.


Assuntos
Biopolímeros/administração & dosagem , Dexametasona/administração & dosagem , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Súbita/tratamento farmacológico , Injeção Intratimpânica , Poliésteres/administração & dosagem , Membrana Timpânica/efeitos dos fármacos , Animais , Preparações de Ação Retardada/administração & dosagem , Feminino , Cobaias , Audição/efeitos dos fármacos , Resultado do Tratamento
14.
Mol Ther Nucleic Acids ; 14: 351-363, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30665184

RESUMO

Synthetic microRNA (miRNA) minigenes (SMIGs) have a major potential for molecular therapy; however, their optimal architecture still needs to be determined. We have previously optimized the stem structure of miRNA hairpins for efficient gene knockdown. Here, we investigate the overall architecture of SMIGs driven by polymerase II-dependent promoters. When miRNA hairpins were placed directly behind the promoter, gene knockdown was inefficient as compared with constructs containing an intercalated sequence ("spacer"). Spacer sequence was relevant for knockdown efficiency and concatenation potential: GFP-based sequences (even when truncated or including stop codons) were particularly efficient. In contrast, a spacer of similar length based on a CD4 intronic sequence was entirely inefficient. Spacer sequences influenced miRNA steady-state levels without affecting transcript stability. We demonstrate that with an optimized spacer, up to five concatenated hairpins targeting two different genes are efficiently expressed and able to knock down their respective targets. Transplantation of hematopoietic stem cells containing a CCR5 knockdown SMIG demonstrated a sustained in vivo efficacy of our approach. In summary, we have defined features that optimize SMIG efficiency. Based on these results, optimized knockdown of genes of interest, such as the HIV co-receptor CCR5 and the NADPH oxidase subunit p22phox, was achieved.

15.
Curr Pharm Des ; 21(41): 5977-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26510434

RESUMO

Inner ear pathologies are associated with major morbidity and loss of life quality in affected patients. In many of these conditions, production of reactive oxygen-species (ROS) is thought to be a key pathological mechanism. While the sources of ROS are complex (including for example mitochondria), there is increasing evidence that activation of NOX enzymes, in particular NOX3, plays a key role. NOX3 is a multi-subunit NADPH oxidase, functionally and structurally closely related to NOX1 and NOX2. In both the vestibular and the cochlear compartments of the inner ear, high levels of NOX3 mRNA are expressed. In NOX3 mutant mice, the vestibular function is perturbed due to a lack of otoconia, while only minor alterations of hearing have been documented. However, there is increasing evidence that activation of NOX3 through drugs, noise and probably also aging, leads to hearing loss. Thus, NOX3 is an interesting target to treat and prevent inner ear pathologies and a few first animal models based on drug - or molecular therapy have been reported. So far however, there are no specific NOX3 inhibitors with a documented penetration into the inner ear. Nevertheless, certain antioxidants and non-specific NOX inhibitors diminish hearing loss in animal models. Development of small molecules inhibitors or molecular strategies against NOX3 could improve specificity and efficiency of redox-targeted treatments. In this review, we will discuss arguments for the involvement of NOX3 in inner ear pathologies and therapeutic approaches to target NOX3 activity.


Assuntos
Doenças do Labirinto/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos , Doenças do Labirinto/metabolismo , Doenças do Labirinto/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
16.
Med Sci (Paris) ; 31(1): 43-52, 2015 Jan.
Artigo em Francês | MEDLINE | ID: mdl-25658730

RESUMO

NADPH oxidases, Nox, are a family of isoenzymes, composed of seven members, whose sole function is to produce reactive oxygen species (ROS). Although Nox catalyze the same enzymatic reaction, they acquired from a common ancestor during evolution, specificities related to their tissue expression, subcellular localization, activation mechanisms and regulation. Their functions could vary depending on the pathophysiological state of the tissues. Indeed, ROS are not only bactericidal weapons in phagocytes but also essential cellular signaling molecules and their overproduction is involved in chronic diseases and diseases of aging. The understanding of the mechanisms involved in the function of Nox and the emergence of Nox inhibitors, require a thorough knowledge of their nature and structure. The objectives of this review are to highlight, in a structure/function approach, the main similar and differentiated properties shared by the human Nox isoenzymes.


Assuntos
NADPH Oxidases , Animais , Evolução Molecular , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Terapia de Alvo Molecular/tendências , Família Multigênica , NADPH Oxidases/química , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Conformação Proteica
17.
Bull Acad Natl Med ; 199(4-5): 673-86; discussion 686-7, 2015.
Artigo em Francês | MEDLINE | ID: mdl-27509686

RESUMO

The NADPH oxidases, Nox, are transmembrane hemoproteins, whose exclusive function is to reduce molecular oxygen to produce superoxide anion O2°- and consequently highly reactive oxidant and toxic oxygen species, ROS. Among the 7 NADPH oxidases expressed in humans, Nox4 is the sole Nox isoform present in human primary chondrocytes. Nox4 was suggested as one of the main actors involved in cartilage degradation in osteoarthritis. The stimulation of chondrocytes, the only cell present in cartilage, by IL-1ß results in the activation of Nox4. This leads to an increase of ROS production which in turn could regulate signaling pathways sensitive to oxidative stress such as gene-encoding matrix metalloproteases MMP1, MMP13 and Adamalysin ADAMTS4. A deep understanding of Nox4 structure/function and mechanisms of regulation could lead both to the identification of new therapeutic targets and to the development of innovative strategies for appropriate osteoarthritis treatment.


Assuntos
Terapia de Alvo Molecular , NADPH Oxidases/fisiologia , Osteoartrite/tratamento farmacológico , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , NADPH Oxidase 4 , NADPH Oxidases/química , Osteoartrite/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS One ; 8(6): e66478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840483

RESUMO

Interleukin-1ß (IL-1ß) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1ß stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1ß signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22(phox) heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1ß. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis.


Assuntos
Apoptose , Condrócitos/enzimologia , Heme Oxigenase-1/fisiologia , Metaloproteinase 1 da Matriz/metabolismo , NADPH Oxidases/metabolismo , Monóxido de Carbono/farmacologia , Condrócitos/fisiologia , Fragmentação do DNA , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Heme/biossíntese , Humanos , Interleucina-1beta/fisiologia , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , Osteoartrite/enzimologia , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
19.
Biochem Pharmacol ; 85(11): 1644-54, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23583257

RESUMO

NADPH oxidase Nox4 is expressed in a wide range of tissues and plays a role in cellular signaling by providing reactive oxygen species (ROS) as intracellular messengers. Nox4 oxidase activity is thought to be constitutive and regulated at the transcriptional level; however, we challenge this point of view and suggest that specific quinone derivatives could modulate this activity. In fact, we demonstrated a significant stimulation of Nox4 activity by 4 quinone derivatives (AA-861, tBuBHQ, tBuBQ, and duroquinone) observed in 3 different cellular models, HEK293E, T-REx™, and chondrocyte cell lines. Our results indicate that the effect is specific toward Nox4 versus Nox2. Furthermore, we showed that NAD(P)H:quinone oxidoreductase (NQO1) may participate in this stimulation. Interestingly, Nox4 activity is also stimulated by reducing agents that possibly act by reducing the disulfide bridge (Cys226, Cys270) located in the extracellular E-loop of Nox4. Such model of Nox4 activity regulation could provide new insight into the understanding of the molecular mechanism of the electron transfer through the enzyme, i.e., its potential redox regulation, and could also define new therapeutic targets in diseases in which quinones and Nox4 are implicated.


Assuntos
Benzoquinonas/farmacologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Humanos , L-Lactato Desidrogenase/metabolismo , Luminescência , Dados de Sequência Molecular , NADPH Oxidase 4 , NADPH Oxidases/química , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
20.
Biochimie ; 93(3): 457-68, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21075166

RESUMO

Nox4, a member of Nox family of NADPH oxidase expressed in nonphagocytic cells, is a major source of reactive oxygen species in many cell types. But understanding of the role of Nox4 in the production of ROS and of regulation mechanism of oxidase activity is largely unknown. This study reports for the first time the generation and characterization of 5 mAbs against a recombinant Nox4 protein (AA: 206-578). Among 5 novel mAbs, 3 mAbs (8E9, 5F9, 6B11) specifically recognized Nox4 protein in HEK293 transfected cells or human kidney cortex by western blot analysis; mAb 8E9 reacted with intact tet-induced T-REx™ Nox4 cells in FACS studies. The other 2 mAbs 10B4 and 7C9 were shown to have a very weak reactivity after purification. Immunofluorescence confocal microscopy showed that Nox4 localized not only in the perinuclear and endoplasmic reticulum regions but also at the plasma membrane of the cells which was further confirmed by TIRF-microscopy. Epitope determination showed that mAb 8E9 recognizes a region on the last extracellular loop of Nox4, while mAbs 6B11 and 5F9 are directed to its cytosolic tail. Contrary to mAb 6B11, mAb 5F9 failed to detect Nox4 at the plasma membrane. Cell-free oxidase assays demonstrated a moderate but significant inhibition of constitutive Nox4 activity by mAbs 5F9 and 6B11. In conclusion, 5 mAbs raised against Nox4 were generated for the first time. 3 of them will provide powerful tools for a structure/function relationship of Nox4 and for physiopathological investigations in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Espaço Intracelular/metabolismo , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Animais , Mapeamento de Epitopos , Células HEK293 , Humanos , Espaço Intracelular/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidase 4 , NADPH Oxidases/genética , Biblioteca de Peptídeos , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...