Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(49): 495802, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32914766

RESUMO

The perpendicular magnetic anisotropy (PMA) and the interfacial Dzyaloshinskii-Moriya interaction (iDMI) are investigated in as grown and 300 °C annealed Co-based ultrathin systems. For this, Co films of various thicknesses (0.8 nm ⩽ t Co ⩽ 5.7 nm) were deposited by magnetron sputtering on thermally oxidized Si substrates using Pt, W, Ir, Ti, Ru and MgO buffer or/and capping layers. X-ray diffraction was used to investigate their structural properties and vibrating sample magnetometry (VSM) was used to determine the magnetic dead layer thickness and the magnetization at saturation (M s). VSM revealed that the M s for the Pt and the Ir buffered and capped films is the largest. Microstrip line ferromagnetic resonance (MS-FMR), used to extract the gyromagnetic ratio of the thicker Co films, revealed the existence of a second order PMA term, which is thickness dependent. Brillouin light scattering (BLS) in the Damon-Eshbach configuration was used to investigate the thickness dependence of the iDMI effective constant from the spin wave vector dependence of the frequency difference between Stokes and anti-Stokes lines. BLS and MS-FMR techniques were combined to measure the spin wave frequency variation as a function of the in-plane applied magnetic field (where the second order PMA contribution vanishes). The thickness dependence of the effective magnetization was then deduced and used to investigate PMA. For all the systems, PMA results from interface and volume contributions that we determined. The largest interface PMA constants were obtained for Pt- and Ir-based systems due to the electron hybridization of Co with these heavy metals having high spin orbit coupling. Annealing at 300 °C increases both the interface PMA and iDMI for the Pt/Co/MgO most probably due to de-mixing of interpenetrating oxygen atoms from the Co layer and the formation of a sharp Co/O interface.

2.
J Phys Condens Matter ; 31(49): 495805, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426046

RESUMO

An assembly of randomly organized cobalt nanoparticles were obtained by solid-state dewetting of a 3 nm-thick cobalt layer. Vibrating sample magnetometry and Brillouin light scattering techniques were used to investigate both their static and dynamic behaviors with respect to the initial native cobalt layer. The measurements obtained from the assembly of the obtained nanodots were analyzed by means of shape anisotropy contribution. The Brillouin spectra revealed an unusual reversed Stokes/anti-Stokes line height asymmetry comparing to that observed on the native layer. The effective optical properties of the nanodots, combined with the relation between mean field and inside-dot field allowed explaining the observed reversed height asymmetry. The assembly of nanodots behave as an effective magnetic and optical medium where these properties can be tuned by the elaboration process.

3.
Sci Rep ; 7(1): 16835, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203797

RESUMO

The Dzyaloshinskii-Moriya interaction has been shown to stabilise Nèel domain walls in magnetic thin films, allowing high domain wall velocities driven by spin current effects. The interfacial Dzyaloshinskii-Moriya interaction (IDMI) occurs at the interface between ferromagnetic and heavy metal layers with strong spin-orbit coupling, but details of the interaction remain to be understood and the role of proximity induced magnetism (PIM) in the heavy metal is unknown. Here IDMI and PIM are reported in Pt determined as a function of Au and Ir spacer layers in Pt/Co/Au,Ir/Pt. Both interactions are found to be sensitive to sub-nanometre changes in the spacer thickness, correlating over sub-monolayer spacer thicknesses, but not for thicker spacers where IDMI continues to change even after PIM is lost.

4.
J Phys Condens Matter ; 27(32): 326002, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26213808

RESUMO

We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value of the domain wall velocity asymmetry changes along the wedge. We show that in our samples the domain wall speed versus Hx curves in the creep regime cannot be explained simply in terms of the variation of the domain wall energy with Hx, as suggested by previous works. For this reason the strength and the sign of the DMI cannot be extracted from these measurements. To obtain reliable information on the DMI strength using magnetic field-induced domain wall dynamics, measurements have been performed with high fields, bringing the DW close to the flow regime of propagation. In this case we find large values of the DMI, consistent in magnitude and sign with those obtained from Brillouin light scattering measurements.

5.
J Phys Condens Matter ; 22(40): 406001, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21386581

RESUMO

Microstrip ferromagnetic resonance and Brillouin scattering are used to provide a comparative determination of the magnetic parameters of thin permalloy layers interfaced with a non-magnetic (Al(2)O(3)) or with an antiferromagnetic oxide (NiO). It results from our microstructural study that no preferential texture is favoured in the observed polycrystalline sublayers. It is shown that the perpendicular anisotropy can be monitored using an interfacial surface energy term which is practically independent of the nature of the interface. In the interval of thicknesses investigated (5-25 nm) the saturation magnetization does not significantly differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy and exchange bias anisotropy are also derived from the study of the dynamic magnetic excitations and compared with our independent evaluations using conventional magnetometry.


Assuntos
Óxido de Alumínio/química , Compostos Férricos/química , Magnetismo , Modelos Teóricos , Níquel/química , Ligas , Modelos Moleculares
6.
J Phys Condens Matter ; 19(17): 176220, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21690965

RESUMO

The magnetic Brillouin scattering of arrays of permalloy stripes with rectangular 29 nm × L cross section (L = 500, 1000, 1500 nm) is studied versus the amplitude and the direction of the applied magnetic field and of the transferred wavevector. A simple model provides a satisfactory agreement of the full set of experimental results: each stripe is viewed as a continuous film showing an in-plane anisotropy due to the demagnetizing effects induced by lateral surfaces. We introduce an anisotropy field H(a) = aM, where M stands for the magnetization and where the coefficient a can be evaluated directly, at least approximately. In addition, we give an account of the previously studied magnetic mode quantization and of the observed variations in the Stokes/anti-Stokes asymmetry in patterned arrays as well as in continuous films.

7.
J Phys Condens Matter ; 19(24): 246221, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21694064

RESUMO

Spin wave excitations in a magnetic structure consisting of a series of long permalloy stripes of a rectangular cross section magnetized along the stripe length and situated above a continuous permalloy film are studied both experimentally and theoretically. Stripes and continuous film are coupled by dipole-dipole interaction across 10 nm thick Cu spacers. Experimental measurements made using the Brillouin light scattering technique (with the light wavevector oriented along the stripe width) provide evidence for one dispersive spin wave mode associated with the continuous film and several discrete non-dispersive modes resonating within the finite width of the stripes.To interpret the experimental spectra, an analytic theory based on the spin wave formalism for finite-width magnetic stripes has been developed, achieving a good qualitative and partly quantitative description of the experimentally observed spin wave spectrum of the system. In particular, it is explained why the presence of a continuous magnetic film near the magnetic stripe leads to a substantial decrease of the frequencies of the discrete dipolar spin wave modes localized within the stripes. A more quantitative description of the measured frequencies and of the spatial profiles of the spin wave eigenmodes has been obtained by numerical calculations performed using a finite element method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...