Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(1): e2745, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107138

RESUMO

Estimating habitat and spatial associations for wildlife is common across ecological studies and it is well known that individual traits can drive population dynamics and vice versa. Thus, it is commonly assumed that individual- and population-level data should represent the same underlying processes, but few studies have directly compared contemporaneous data representing these different perspectives. We evaluated the circumstances under which data collected from Lagrangian (individual-level) and Eulerian (population-level) perspectives could yield comparable inference to understand how scalable information is from the individual to the population. We used Global Positioning System (GPS) collar (Lagrangian) and camera trap (Eulerian) data for seven species collected simultaneously in eastern Washington (2018-2020) to compare inferences made from different survey perspectives. We fit the respective data streams to resource selection functions (RSFs) and occupancy models and compared estimated habitat- and space-use patterns for each species. Although previous studies have considered whether individual- and population-level data generated comparable information, ours is the first to make this comparison for multiple species simultaneously and to specifically ask whether inferences from the two perspectives differed depending on the focal species. We found general agreement between the predicted spatial distributions for most paired analyses, although specific habitat relationships differed. We hypothesize the discrepancies arose due to differences in statistical power associated with camera and GPS-collar sampling, as well as spatial mismatches in the data. Our research suggests data collected from individual-based sampling methods can capture coarse population-wide patterns for a diversity of species, but results differ when interpreting specific wildlife-habitat relationships.


Assuntos
Animais Selvagens , Ecossistema , Animais , Sistemas de Informação Geográfica , Inquéritos e Questionários , Telemetria
2.
J Anim Ecol ; 91(11): 2273-2288, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36071537

RESUMO

Wildfires are increasing in size, frequency and severity due to climate change and fire suppression, but the direct and indirect effects on wildlife remain largely unresolved. Fire removes forest canopy, which can improve forage for ungulates but also reduce snow interception, leading to a deeper snowpack and potentially increased vulnerability to predation in winter. If ungulates exhibit predator-mediated foraging, burns should generally be selected for in summer to access high-quality forage and avoided in winter to reduce predation risk in deep snow. Fires also typically increase the amount of deadfall and initiate the growth of dense understory vegetation, creating obstacles that may confer a hunting advantage to stalking predators and a disadvantage to coursing predators. To minimize risk, ungulates may therefore avoid burns when and where stalking predators are most active, and use burns when and where coursing predators are most active. We used telemetry data from GPS-collared mule deer (Odocoileus hemionus), cougars (Puma concolor) and wolves (Canis lupus) to develop step selection functions to examine how mule deer navigated species-specific predation risk across a landscape in northern Washington, USA, that has experienced substantial wildfire activity during the past several decades. We considered a diverse array of wildfire impacts, accounting for both the severity of the fire and time since the burn (1-35 years) in our analyses. We observed support for the predator mediating foraging hypothesis: mule deer generally selected for burned areas in summer and avoided burns in winter. In addition, deer increased use of burned areas when and where wolf activity was high and avoided burns when and where cougar use was high in winter, suggesting the hunting mode of resident predators mediated the seasonal response of deer to burns. Deer were not more likely to die by predation in burned than in unburned areas, indicating that they adequately manage fire-induced changes to predation risk. As fire activity increases with climate change, our findings indicate the impact on ungulates will depend on trade-offs between enhanced summer forage and functionally reduced winter range, mediated by characteristics of the predator community.


Assuntos
Cervos , Puma , Incêndios Florestais , Lobos , Animais , Cervos/fisiologia , Estações do Ano , Lobos/fisiologia , Comportamento Predatório/fisiologia , Puma/fisiologia , Equidae , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA