Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 13(3): 375-390, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519868

RESUMO

Brain-computer interfaces (BCI) translate brain signals into artificial output to restore or replace natural central nervous system (CNS) functions. Multiple processes, including sensorimotor integration, decision-making, motor planning, execution, and updating, are involved in any movement. For example, a BCI may be better able to restore naturalistic motor behaviors if it uses signals from multiple brain areas and decodes natural behaviors' cognitive and motor aspects. This review provides an overview of the preliminary information necessary to plan a BCI project focusing on intracortical implants in primates. Since the brain structure and areas of non-human primates (NHP) are similar to humans, exploring the result of NHP studies will eventually benefit human BCI studies. The different types of BCI systems based on the target cortical area, types of signals, and decoding methods will be discussed. In addition, various successful state-of-the-art cases will be reviewed in more detail, focusing on the general algorithm followed in the real-time system. Finally, an outlook for improving the current BCI research studies will be debated.

2.
Brain Res ; 1814: 148394, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156320

RESUMO

Patients diagnosed with Parkinson's disease (PD) have difficulty initiating and executing movements due to an acquired imbalance of the basal ganglia thalamocortical circuit secondary to loss of dopaminergic input into the striatum. The unbalanced circuit is hyper-synchronized, presenting as larger and longer bursts of beta-band (13-30 Hz) oscillations in the subthalamic nucleus (STN). As a first step toward a novel PD therapy that aims to improve symptoms through beta desynchronization, we sought to determine if individuals with PD could acquire volitional control of STN beta power in a neurofeedback task. We found a significant difference in STN beta power between task conditions, and relevant brain signal features could be detected and decoded in real time. This demonstration of volitional control of STN beta motivates development of a neurofeedback therapy to modulate PD symptom severity.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Ritmo beta , Gânglios da Base
3.
Cell Rep ; 42(5): 112449, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119136

RESUMO

The lateral prefrontal cortex (LPFC) of primates is thought to play a role in associative learning. However, it remains unclear how LPFC neuronal ensembles dynamically encode and store memories for arbitrary stimulus-response associations. We recorded the activity of neurons in LPFC of two macaques during an associative learning task using multielectrode arrays. During task trials, the color of a symbolic cue indicated the location of one of two possible targets for a saccade. During a trial block, multiple randomly chosen associations were learned by the subjects. A state-space analysis indicated that LPFC neuronal ensembles rapidly learn new stimulus-response associations mirroring the animals' learning. Multiple associations acquired during training are stored in a neuronal subspace and can be retrieved hours after learning. Finally, knowledge of old associations facilitates learning new, similar associations. These results indicate that neuronal ensembles in the primate LPFC provide a flexible and dynamic substrate for associative learning.


Assuntos
Macaca , Neurônios , Animais , Neurônios/fisiologia , Primatas , Aprendizagem , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA