Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3718, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842491

RESUMO

The biogeochemistry of hypersaline environments is strongly influenced by changes in biological processes and physicochemical parameters. Although massive evaporation events have occurred repeatedly throughout Earth history, their biogeochemical cycles and global impact remain poorly understood. Here, we provide the first nitrogen isotopic data for nutrients and chloropigments from modern shallow hypersaline environments (solar salterns, Trapani, Italy) and apply the obtained insights to δ15N signatures of the Messinian salinity crisis (MSC) in the late Miocene. Concentrations and δ15N of chlorophyll a, bacteriochlorophyll a, nitrate, and ammonium in benthic microbial mats indicate that inhibition of nitrification suppresses denitrification and anammox, resulting in efficient ammonium recycling within the mats and high primary productivity. We also suggest that the release of 15N-depleted NH3(gas) with increasing salinity enriches ammonium 15N in surface brine (≈34.0‰). Such elevated δ15N is also recorded in geoporphyrins isolated from sediments of the MSC peak (≈20‰), reflecting ammonium supply sufficient for sustaining phototrophic primary production. We propose that efficient nutrient supply combined with frequent bottom-water anoxia and capping of organic-rich sediments by evaporites of the Mediterranean MSC could have contributed to atmospheric CO2 reduction during the late Miocene.

2.
Geobiology ; 8(2): 101-11, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20059556

RESUMO

Earth scientists have searched for signs of microscopic life in ancient samples of permafrost, ice, deep-sea sediments, amber, salt and chert. Until now, evidence of cyanobacteria has not been reported in any studies of ancient DNA older than a few thousand years. Here, we investigate morphologically, biochemically and genetically primary evaporites deposited in situ during the late Miocene (Messinian) Salinity Crisis from the north-eastern Apennines of Italy. The evaporites contain fossilized bacterial structures having identical morphological forms as modern microbes. We successfully extracted and amplified genetic material belonging to ancient cyanobacteria from gypsum crystals dating back to 5.910-5.816 Ma, when the Mediterranean became a giant hypersaline brine pool. This finding represents the oldest ancient cyanobacterial DNA to date. Our clone library and its phylogenetic comparison with present cyanobacterial populations point to a marine origin for the depositional basin. This investigation opens the possibility of including fossil cyanobacterial DNA into the palaeo-reconstruction of various environments and could also be used to quantify the ecological importance of cyanobacteria through geological time. These genetic markers serve as biosignatures providing important clues about ancient life and begin a new discussion concerning the debate on the origin of late Miocene evaporites in the Mediterranean.


Assuntos
Sulfato de Cálcio , Cianobactérias/classificação , Fósseis , Genes de RNAr , Paleontologia , RNA Ribossômico 16S/genética , Sulfato de Cálcio/química , Cristalização , Cianobactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Evolução Molecular , Sedimentos Geológicos/microbiologia , Itália , Microscopia Eletrônica de Varredura , Filogenia , Análise de Sequência de DNA , Selenito de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA