Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7881, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036504

RESUMO

The impacts of large terrestrial volcanic eruptions are apparent from satellite monitoring and direct observations. However, more than three quarters of all volcanic outputs worldwide lie submerged beneath the ocean, and the risks they pose to people, infrastructure, and benthic ecosystems remain poorly understood due to inaccessibility and a lack of detailed observations before and after eruptions. Here, comparing data acquired between 2015 - 2017 and 3 months after the January 2022 eruption of Hunga Volcano, we document the far-reaching and diverse impacts of one of the most explosive volcanic eruptions ever recorded. Almost 10 km3 of seafloor material was removed during the eruption, most of which we conclude was redeposited within 20 km of the caldera by long run-out seafloor density currents. These powerful currents damaged seafloor cables over a length of >100 km, reshaped the seafloor, and caused mass-mortality of seafloor life. Biological (mega-epifaunal invertebrate) seafloor communities only survived the eruption where local topography provided a physical barrier to density currents (e.g., on nearby seamounts). While the longer-term consequences of such a large eruption for human, ecological and climatic systems are emerging, we expect that these previously-undocumented refugia will play a key role in longer-term ecosystem recovery.

2.
PeerJ ; 11: e16024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846312

RESUMO

Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Pesqueiros
3.
J Environ Manage ; 346: 118938, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738731

RESUMO

The waters around New Zealand are a global hotspot of biodiversity for deep-water corals; approximately one sixth of the known deep-water coral species of the world have been recorded in the region. Deep-water corals are vulnerable to climate-related stressors and from the damaging effects of commercial fisheries. Current protection measures do not account for the vulnerability of deep-water corals to future climatic conditions, which are predicted to alter the distribution of suitable habitat for them. Using recently developed habitat suitability models for 12 taxa of deep-water corals fitted to current and future seafloor environmental conditions (under different future climatic conditions: SSP2 - 4.5 and SSP3 - 7.0) we explore possible levels of spatial protection using the decision-support tool Zonation. Specifically, we assess the impact of bottom trawling on predictions of current distributions of deep-water corals, and then assess the effectiveness of possible protection for deep-water corals, while accounting for habitat refugia under future climatic conditions. The cumulative impact of bottom trawling was predicted to impact all taxa, but particularly the reef-forming corals. Core areas of suitable habitat were predicted to decrease under future climatic conditions for many taxa. We found that designing protection using current day predictions alone, having accounted for the impacts of historic fishing impacts, was unlikely to provide adequate conservation for deep water-corals under future climate change. Accounting for future distributions in spatial planning identified areas which may provide climate refugia whilst still providing efficient protection for current distributions. These gains in conservation value may be particularly important given the predicted reduction in suitable habitat for deep-water corals due to bottom fishing and climate change. Finally, the possible impact that protection measures may have on deep-water fisheries was assessed using a measure of current fishing value (kg km-2 fish) and future fishing value (predicted under future climate change scenarios).

4.
Glob Chang Biol ; 28(22): 6556-6576, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36045501

RESUMO

Deep-water corals are protected in the seas around New Zealand by legislation that prohibits intentional damage and removal, and by marine protected areas where bottom trawling is prohibited. However, these measures do not protect them from the impacts of a changing climate and ocean acidification. To enable adequate future protection from these threats we require knowledge of the present distribution of corals and the environmental conditions that determine their preferred habitat, as well as the likely future changes in these conditions, so that we can identify areas for potential refugia. In this study, we built habitat suitability models for 12 taxa of deep-water corals using a comprehensive set of sample data and predicted present and future seafloor environmental conditions from an earth system model specifically tailored for the South Pacific. These models predicted that for most taxa there will be substantial shifts in the location of the most suitable habitat and decreases in the area of such habitat by the end of the 21st century, driven primarily by decreases in seafloor oxygen concentrations, shoaling of aragonite and calcite saturation horizons, and increases in nitrogen concentrations. The current network of protected areas in the region appear to provide little protection for most coral taxa, as there is little overlap with areas of highest habitat suitability, either in the present or the future. We recommend an urgent re-examination of the spatial distribution of protected areas for deep-water corals in the region, utilising spatial planning software that can balance protection requirements against value from fishing and mineral resources, take into account the current status of the coral habitats after decades of bottom trawling, and consider connectivity pathways for colonisation of corals into potential refugia.


Assuntos
Antozoários , Animais , Carbonato de Cálcio , Mudança Climática , Concentração de Íons de Hidrogênio , Nova Zelândia , Nitrogênio , Oxigênio , Água do Mar , Água
5.
Limnol Oceanogr ; 66(6): 2095-2109, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34239169

RESUMO

Hadal trenches represent the deepest part of the ocean and are dynamic depocenters with intensified prokaryotic activity. Here, we explored the distribution and drivers of prokaryotic and viral abundance from the ocean surface and 40 cm into sediments in two hadal trench regions with contrasting surface productivity. In the water column, prokaryotic and viral abundance decreased with water depth before reaching a rather stable level at ~ 4000 m depth at both trench systems, while virus to prokaryote ratios were increasing with depth, presumably reflecting the declining availability of organic material. Prokaryotic and viral abundances in sediments were lower at the adjacent abyssal sites than at the hadal sites and declined exponentially with sediment depth, closely tracking the attenuation of total organic carbon (TOC) content. In contrast, hadal sediment exhibited erratic depth profiles of prokaryotes and viruses with many subsurface peaks. The prokaryotic abundance correlated well to extensive fluctuations in TOC content at centimeter scale, which were likely caused by recurring mass wasting events. Yet while prokaryotic and viral abundances cross correlated well in the abyssal sediments, there was no clear correlation in the hadal sites. The results suggested that dynamic depositional conditions and higher substrate availability result in a high spatial heterogeneity in viral and prokaryotic abundances in hadal sediments in comparison to more stable abyssal settings. We argue that these conditions enhance the relatively importance of viruses for prokaryotic mortality and carbon recycling in hadal settings.

6.
Mar Environ Res ; 161: 105086, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32889447

RESUMO

Despite bottom trawling being the most widespread, severe disturbance affecting deep-sea environments, it remains uncertain whether recovery is possible once trawling has ceased. Here, we review information regarding the resilience of seamount benthic communities to trawling. We focus on seamounts because benthic communities associated with these features are especially vulnerable to trawling as they are often dominated by emergent, sessile epifauna, and trawling on seamounts can be highly concentrated. We perform a meta-analysis to investigate whether any taxa demonstrate potential for recovery once trawling has ceased. Our findings indicate that mean total abundance can gradually increase after protection measures are placed, although taxa exhibit various responses, from no recovery to intermediate/high recovery, resistance, or signs of early colonisation. We use our results to recommend directions for future research to improve our understanding of the resilience of seamount benthic communities, and thereby inform the management of trawling impacts on these ecosystems.


Assuntos
Ecossistema , Invertebrados , Animais , Pesqueiros , Dinâmica Populacional
7.
Sci Rep ; 10(1): 2844, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071333

RESUMO

Understanding the ecological processes that shape spatial genetic patterns of population structure is critical for understanding evolutionary dynamics and defining significant evolutionary and management units in the deep sea. Here, the role of environmental factors (topographic, physico-chemical and biological) in shaping the population genetic structure of four deep-sea habitat-forming species (one sponge - Poecillastra laminaris, three corals - Goniocorella dumosa, Madrepora oculata, Solenosmilia variabilis) was investigated using seascape genetics. Genetic data (nuclear and mitochondrial sequences and microsatellite multilocus genotypes) and environmental variables were employed to build individual-based and population-level models. The results indicated that environmental factors affected genetic variation differently amongst the species, as well as at different geographic scales. For individual-based analyses, different environmental variables explained genetic variation in P. laminaris (dissolved oxygen), G. dumosa (dynamic topography), M. oculata (sea surface temperature and surface water primary productivity), and S. variabilis (tidal current speed). At the population level, factors related to current and food source explained the regional genetic structure in all four species, whilst at the geomorphic features level, factors related to food source and topography were most important. Environmental variation in these parameters may be acting as barriers to gene flow at different scales. This study highlights the utility of seascape genetic studies to better understand the processes shaping the genetic structure of organisms, and to identify environmental factors that can be used to locate sites for the protection of deep-sea Vulnerable Marine Ecosystems.


Assuntos
Organismos Aquáticos/genética , Conservação dos Recursos Naturais , Ecossistema , Genética Populacional , Animais , Antozoários/genética , Fluxo Gênico , Variação Genética/genética , Genótipo , Repetições de Microssatélites/genética , Poríferos/genética , Especificidade da Espécie , Temperatura
8.
Zootaxa ; 4576(3): zootaxa.4576.3.1, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31715746

RESUMO

Three new sponge species in the demosponge families Chalinidae Gray and Suberitidae Schmidt are described from the Calypso hydrothermal vent field in the Bay of Plenty, and one species from seep sites along the Hikurangi Margin, to the east of the North Island, New Zealand. The Calypso hydrothermal vent field is dominated by the chalinid sponge Haliclona (Soestella) battershilli sp. nov., a large, cream-coloured, finely branched species, and the less common H. (Halichoclona) sonnae sp. nov., an encrusting, translucent white, cushion-shaped species. The third species, the suberitid sponge Protosuberites novaezelandiae sp. nov., forms encrustations with digitate projections. Haliclona (Halichoclona) sonnae sp. nov. and Protosuberites novaezelandiae sp. nov. represent new subgenus and genus records, respectively, for New Zealand waters. The methanotrophic suberitid sponge, Pseudosuberites thurberi sp. nov., is found at many of the cold seep sites on the Hikurangi Margin where it forms extensive, encrusting to digitate mats. The description of these species provides a basis for the future study of the ecology of sponges that are apparently endemic to vent and seep habitats off New Zealand.


Assuntos
Haliclona , Fontes Hidrotermais , Poríferos , Animais , Ecossistema , Nova Zelândia
9.
Sci Rep ; 9(1): 5482, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940897

RESUMO

The United Nations General Assembly has called for greater protection of the world's deep-sea species and of features such as Vulnerable Marine Ecosystems (VMEs). Sponges are important components of VMEs and information about their spatially explicit genetic diversity can inform management decisions concerning the placement of protected areas. We employed a spatially explicit hierarchical testing framework to examine genetic variation amongst archived samples of four deep-sea sponges in the New Zealand region. For Poecillastra laminaris Sollas 1886, significant mitochondrial (COI, Cytb) and nuclear DNA (microsatellite) genetic differences were observed between provinces, amongst north-central-south regions and amongst geomorphic features. For Penares sp. no significant structure was detected (COI, 12S) across the same areas. For both Neoaulaxinia persicum Kelly, 2007 (COI, 12S) and Pleroma menoui Lévi & Lévi 1983 (COI) there was no evidence of genetic differentiation within their northern only regional distributions. Of 10 separate species-by-marker tests for isolation-by-distance and isolation-by-depth, only the isolation-by-depth test for N. persicum for COI was significant. The use of archived samples highlights how historical material may be used to support national and international management decisions. The results are discussed in the broader context of existing marine protected areas, and possible future design of spatial management measures for protecting VMEs in the New Zealand region.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Poríferos/classificação , Análise de Sequência de DNA/veterinária , Animais , Conservação dos Recursos Naturais , Ecossistema , Genética Populacional , Repetições de Microssatélites , Nova Zelândia , Poríferos/genética
10.
PeerJ ; 6: e5994, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568853

RESUMO

BACKGROUND: The hadal zone encompasses the deepest parts of the world's ocean trenches from depths of ∼6,000-11,000 m. The communities observed at these depths are dominated by scavenging amphipods that rapidly intercept and consume carrion as it falls to the deepest parts of the trenches. New samples collected in the Tonga Trench provide an opportunity to compare the amphipod assemblages and the population structure of a dominant species, Hirondellea dubia Dahl, 1959, between trenches and with earlier data presented for the Tonga Trench, and other trenches in the South Pacific. METHODS: Over 3,600 individual scavenging amphipods across 10 species were collected in seven baited traps at two sites; in the Horizon Deep site, the deepest part of the Tonga Trench (10,800 m) and a site directly up-slope at the trench edge (6,250 m). The composition of the bait-attending amphipods is described and a morphometric analysis of H. dubia examines the bathymetric distribution of the different life stages encountered. RESULTS: The amphipod assemblage was more diverse than previously reported, seven species were recorded for the first time from the Tonga Trench. The species diversity was highest at the shallower depth, with H. dubia the only species captured at the deepest site. At the same time, the abundance of amphipods collected at 10,800 m was around sevenfold higher than at the shallower site. H. dubia showed clear ontogenetic vertical structuring, with juveniles dominant at the shallow site and adults dominant at the deep site. The amphipods of the deeper site were always larger at comparable life stage. DISCUSSION: The numbers of species encountered in the Tonga Trench is less than reported from the New Hebrides and Kermadec trenches, and six species encountered are shared across trenches. These findings support the previous suggestion that the fauna of the New Hebrides, Tonga and Kermadec Trenches may represent a single biogeographic province. The ontogenetic shift in H. dubia between the two Tonga Trench sites supports the hypothesis of interspecific competition at the shallower bathymetric range of the species, and the presence of competitive physiological advantages that allow the adults at the trench axis to exploit the more labile organic material that reaches the bottom of the trench.

11.
Sci Adv ; 4(3): eaar3748, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546245

RESUMO

Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikoura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year-1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

12.
Evol Appl ; 10(10): 1040-1054, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29151859

RESUMO

Deep-sea stony corals, which can be fragile, long-lived, late to mature and habitat-forming, are defined as vulnerable marine ecosystem indicator taxa. Under United Nations resolutions, these corals require protection from human disturbance such as fishing. To better understand the vulnerability of stony corals (Goniocorella dumosa, Madrepora oculata, Solenosmilia variabilis) to disturbance within the New Zealand region and to guide marine protected area design, genetic structure and connectivity were determined using microsatellite loci and DNA sequencing. Analyses compared population genetic differentiation between two biogeographic provinces, amongst three subregions (north-central-south) and amongst geomorphic features. Extensive population genetic differentiation was revealed by microsatellite variation, whilst DNA sequencing revealed very little differentiation. For G. dumosa, genetic differentiation existed amongst regions and geomorphic features, but not between provinces. For M. oculata, only a north-central-south regional structure was observed. For S. variabilis, genetic differentiation was observed between provinces, amongst regions and amongst geomorphic features. Populations on the Kermadec Ridge were genetically different from Chatham Rise populations for all three species. A significant isolation-by-depth pattern was observed for both marker types in G. dumosa and also in ITS of M. oculata. An isolation-by-distance pattern was revealed for microsatellite variation in S. variabilis. Medium to high levels of self-recruitment were detected in all geomorphic populations, and rates and routes of genetic connectivity were species-specific. These patterns of population genetic structure and connectivity at a range of spatial scales indicate that flexible spatial management approaches are required for the conservation of deep-sea corals around New Zealand.

13.
PeerJ ; 4: e2154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441114

RESUMO

Studies of deep-sea benthic communities have largely focused on particular (macro) habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure). Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty) at four water depths (700, 1,000, 1,200 and 1,500 m). We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm) to meso- (0.1-10 km), and regional scales (> 100 km). We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

14.
Mar Environ Res ; 115: 78-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26897590

RESUMO

Mining of seafloor massive sulfides (SMS) is imminent, but the ecology of assemblages at SMS deposits is poorly known. Proposed conservation strategies include protected areas to preserve biodiversity at risk from mining impacts. Determining site suitability requires biological characterisation of the mine site and protected area(s). Video survey of a proposed mine site and protected area off New Zealand revealed unique megafaunal assemblages at the mine site. Significant relationships were identified between assemblage structure and environmental conditions, including hydrothermal features. Unique assemblages occurred at both active and inactive chimneys and are particularly at risk from mining-related impacts. The occurrence of unique assemblages at the mine site suggests that the proposed protected area is insufficient alone and should instead form part of a network. These results provide support for including hydrothermally active and inactive features within networks of protected areas and emphasise the need for quantitative survey data of proposed sites.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mineração , Sulfetos , Fontes Hidrotermais
15.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1959-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25329254

RESUMO

Three individual-specific DNA libraries of the deep-sea scleractinian coral Solenosmilia variabilis (Duncan, 1873) were constructed to obtain complete mitochondrial genomes using the 454 Life Science pyrosequencing system. Two mitogenomes were successfully assembled: both were 15,968 bp in length, with base composition of A (24.2%), T (41.1%), C (13.7%) and G (21.0%). The genome contains 13 protein-coding genes, 2 ribosomal RNA genes, 2 transfer RNA genes and a D-loop region. The two mitogenomes were almost identical, with only 5 nucleotide differences (0.03%), including a synonymous substitution within the nad1, nad2 and nad4L genes, and two transversions in the D-loop region. This inter-individual variation indicates that these genes and/or region are potential candidates as molecular markers for population genetic research. The mitogenome of S. variabilis will be useful for future phylogenetic and phylogeographic studies of deep-sea corals.


Assuntos
Antozoários/genética , Variação Genética , Genoma Mitocondrial , Animais , Pareamento de Bases/genética , Sequência de Bases , DNA Mitocondrial/genética , Genes Mitocondriais , RNA Ribossômico/genética , RNA de Transferência/genética
16.
Proc Natl Acad Sci U S A ; 111(12): 4461-5, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24591588

RESUMO

No fish have been found in the deepest 25% of the ocean (8,400-11,000 m). This apparent absence has been attributed to hydrostatic pressure, although direct evidence is wanting because of the lack of deepest-living species to study. The common osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins against pressure and increases with depth, going from 40 to 261 mmol/kg in teleost fishes from 0 to 4,850 m. TMAO accumulation with depth results in increasing internal osmolality (typically 350 mOsmol/kg in shallow species compared with seawater's 1,100 mOsmol/kg). Preliminary extrapolation of osmolalities of predicted isosmotic state at 8,000-8,500 m may indicate a possible physiological limit, as greater depths would require reversal of osmotic gradients and, thus, osmoregulatory systems. We tested this prediction by capturing five of the second-deepest known fish, the hadal snailfish (Notoliparis kermadecensis; Liparidae), from 7,000 m in the Kermadec Trench. We found their muscles to have a TMAO content of 386 ± 18 mmol/kg and osmolality of 991 ± 22 mOsmol/kg. These data fit previous extrapolations and, combined with new osmolalities from bathyal and abyssal fishes, predict isosmotic state at 8,200 m. This is previously unidentified evidence that biochemistry could constrain the depth of a large, complex taxonomic group.


Assuntos
Ecossistema , Peixes/metabolismo , Biologia Marinha , Animais , Oceanos e Mares , Concentração Osmolar , Oxirredutases N-Desmetilantes/metabolismo
17.
PLoS One ; 8(10): e76869, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204691

RESUMO

Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna.


Assuntos
Temperatura Baixa , Ecossistema , Invertebrados/crescimento & desenvolvimento , Metano/metabolismo , Animais , Bivalves/crescimento & desenvolvimento , Geografia , Sedimentos Geológicos/parasitologia , Atividades Humanas , Humanos , Invertebrados/classificação , Biologia Marinha , Nova Zelândia , Oceanos e Mares , Poliquetos/crescimento & desenvolvimento , Sulfetos/metabolismo
18.
PLoS One ; 8(9): e75160, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086460

RESUMO

Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat for other macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and the distributions of these species, are poorly known. Bryozoan-generated habitats are vulnerable to bottom fishing, so knowledge of species' distributions is essential for management purposes. To better understand these distributions, presence records were collated and mapped, and habitat suitability models were generated (Maxent, 1 km(2) grid) for the 11 most common habitat-forming bryozoan species: Arachnopusia unicornis, Cellaria immersa, Cellaria tenuirostris, Celleporaria agglutinans, Celleporina grandis, Cinctipora elegans, Diaperoecia purpurascens, Galeopsis porcellanicus, Hippomenella vellicata, Hornera foliacea, and Smittoidea maunganuiensis. The models confirmed known areas of habitat, and indicated other areas as potentially suitable. Water depth, vertical water mixing, tidal currents, and water temperature were useful for describing the distribution of the bryozoan species at broad scales. Areas predicted as suitable for multiple species were identified, and these 'hotspots' were compared to fishing effort data. This showed a potential conflict between fishing and the conservation of bryozoan-generated habitat. Fishing impacts are known from some sites, but damage to large areas of habitat-forming bryozoans is likely to have occurred throughout the study area. In the present study, spatial error associated with the use of historic records and the coarse native resolution of the environmental variables limited both the resolution at which the models could be interpreted and our understanding of the ecological requirements of the study species. However, these models show species distribution modelling has potential to further our understanding of habitat-forming bryozoan ecology and distribution. Importantly, comparisons between hotspots of suitable habitat and the distribution of bottom fishing in the study area highlight the need for management measures designed to mitigate the impact of seafloor disturbance on bryozoan-generated habitat in New Zealand waters.


Assuntos
Briozoários/fisiologia , Conservação dos Recursos Naturais/métodos , Demografia , Ecossistema , Animais , Área Sob a Curva , Modelos Biológicos , Nova Zelândia , Oceano Pacífico , Densidade Demográfica , Especificidade da Espécie , Temperatura , Movimentos da Água
19.
PLoS One ; 7(11): e49474, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185341

RESUMO

Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand's EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.


Assuntos
Ecossistema , Invertebrados/genética , Animais , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Marcadores Genéticos , Variação Genética , Genética Populacional , Geografia , Haplótipos , Invertebrados/fisiologia , Modelos Genéticos , Nova Zelândia , Oceanos e Mares , RNA/metabolismo , RNA Mitocondrial , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...