Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sports Med Open ; 10(1): 31, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564117

RESUMO

BACKGROUND: Sport-related concussion (SRC) is a heterogenous injury that often presents with varied symptoms and impairment. Recently, research has focused on identifying subtypes, or clinical profiles of concussion to be used in assessing and treating athletes with SRC. The purpose of this study was to investigate sex differences in clinical profiles, recovery duration, and initial symptom severity after SRC in a cohort of collegiate athletes in the Pacific-12 Conference (Pac-12). METHODS: This prospective cohort study examined post-SRC symptoms, recovery, and return-to-play times using data from the Pac-12 CARE Affiliated Program and Pac-12 Health Analytics Program. Clinical profiles reported by student-athletes were defined by the number (> 50%) of specific symptoms frequently reported for each profile. Generalized linear mixed models were used to examine associations among sex, clinical profiles, time-to-recovery, and return-to-play times. RESULTS: 479 concussion incidents met inclusion criteria. The probabilities of initial presentation of each clinical profile, initial injury severity scores, and recovery times within a profile did not differ between sexes (p = 0.33-0.98). However, both males and females had > 0.75 probabilities of exhibiting cognitive and ocular profiles. Initial injury severity score was a strong nonlinear predictor of initial number of clinical profiles (p < 0.0001), which did not differ between sexes. The number of clinical profiles was also a nonlinear predictor of time-to-recovery (p = 0.03) and return-to-play times (p < 0.0001). CONCLUSIONS: Initial symptom severity was strongly predictive of the number of acute clinical profiles experienced post-SRC. As the number of clinical profiles increased, time-to-recovery and time to return-to-play also increased. Factors other than sex may be better associated with acute symptom presentation post-concussion as no sex differences were found in reported clinical profiles or recovery. Understanding the number and type of clinical profiles experienced post-SRC may help inform concussion diagnostics and management.

2.
Clin Exp Immunol ; 216(3): 221-229, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38456795

RESUMO

Microglia are specialized immune cells unique to the central nervous system (CNS). Microglia have a highly plastic morphology that changes rapidly in response to injury or infection. Qualitative and quantitative measurements of ever-changing microglial morphology are considered a cornerstone of many microglia-centric research studies. The distinctive morphological variations seen in microglia are a useful marker of inflammation and severity of tissue damage. Although a wide array of damage-associated microglial morphologies has been documented, the exact functions of these distinct morphologies are not fully understood. In this review, we discuss how microglia morphology is not synonymous with microglia function, however, morphological outcomes can be used to make inferences about microglial function. For a comprehensive examination of the reactive status of a microglial cell, both histological and genetic approaches should be combined. However, the importance of quality immunohistochemistry-based analyses should not be overlooked as they can succinctly answer many research questions.


Assuntos
Microglia , Microglia/imunologia , Humanos , Animais , Inflamação/imunologia , Inflamação/patologia , Sistema Nervoso Central/imunologia , Imuno-Histoquímica
3.
Front Neurosci ; 18: 1361014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426017

RESUMO

Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.

4.
Neurotrauma Rep ; 5(1): 95-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404523

RESUMO

Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB), which may exacerbate neuroinflammation post-injury. Few translational studies have examined BBB dysfunction and subsequent neuroinflammation post-TBI in juveniles. We hypothesized that BBB dysfunction positively predicts microglial activation and that vulnerability to BBB dysfunction and associated neuroinflammation are dependent on age at injury. Post-natal day (PND)17 and PND35 rats (n = 56) received midline fluid percussion injury or sham surgery, and immunoglobulin-G (IgG) stain was quantified as a marker of extravasated blood in the brain and BBB dysfunction. We investigated BBB dysfunction and the microglial response in the hippocampus, hypothalamus, and motor cortex relative to age at injury and days post-injury (DPI; 1, 7, and 25). We measured the morphologies of ionized calcium-binding adaptor molecule 1-labeled microglia using cell body area and perimeter, microglial branch number and length, end-points/microglial cell, and number of microglia. Data were analyzed using generalized hierarchical models. In PND17 rats, TBI increased levels of IgG compared to shams. Independent of age at injury, IgG in TBI rats was higher at 1 and 7 DPI, but resolved by 25 DPI. TBI activated microglia (more cells and fewer end-points) in PND35 rats compared to respective shams. Independent of age at injury, TBI induced morphological changes indicative of microglial activation, which resolved by 25 DPI. TBI rats had fewer cells and end-points per cell at 1 and 7 DPI than 25 DPI. Independent of TBI, PND17 rats had larger, more activated microglia than PND35 rats; PND17 TBI rats had larger cell body areas and perimeters than PND35 TBI rats. Importantly, we found support in both ages that IgG quantification predicted microglial activation after TBI. The number of microglia increased with increasing IgG, whereas branch length decreased with increasing IgG, which together indicate microglial activation. Our results suggest that stabilization of the BBB after pediatric TBI may be an important therapeutic strategy to limit neuroinflammation and promote recovery.

5.
Mol Neurobiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411868

RESUMO

Traumatic brain injury (TBI) increases the long-term risk of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we demonstrate that protein variant pathology generated in brain tissue of an experimental TBI mouse model is similar to protein variant pathology observed during early stages of AD, and that subacute accumulation of AD associated variants of amyloid beta (Aß) and tau in the TBI mouse model correlated with behavioral deficits. Male C57BL/6 mice were subjected to midline fluid percussion injury or to sham injury, after which sensorimotor function (rotarod, neurological severity score), cognitive deficit (novel object recognition), and affective deficits (elevated plus maze, forced swim task) were assessed post-injury (DPI). Protein pathology at 7, 14, and 28 DPI was measured in multiple brain regions using an immunostain panel of reagents selectively targeting different neurodegenerative disease-related variants of Aß, tau, TDP-43, and alpha-synuclein. Overall, TBI resulted in sensorimotor deficits and accumulation of AD-related protein variant pathology near the impact site, both of which returned to sham levels by 14 DPI. Individual mice, however, showed persistent behavioral deficits and/or accumulation of toxic protein variants at 28 DPI. Behavioral outcomes of each mouse were correlated with levels of seven different protein variants in ten brain regions at specific DPI. Out of 21 significant correlations between protein variant levels and behavioral deficits, 18 were with variants of Aß or tau. Correlations at 28 DPI were all between a single Aß or tau variant, both of which are strongly associated with human AD cases. These data provide a direct mechanistic link between protein pathology resulting from TBI and the hallmarks of AD.

6.
J Endocrinol ; 260(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855319

RESUMO

Traumatic brain injury (TBI) can damage the hypothalamus and cause improper activation of the growth hormone (GH) axis, leading to growth hormone deficiency (GHD). GHD is one of the most prevalent endocrinopathies following TBI in adults; however, the extent to which GHD affects juveniles remains understudied. We used postnatal day 17 rats (n = 83), which model the late infantile/toddler period, and assessed body weights, GH levels, and number of hypothalamic somatostatin neurons at acute (1, 7 days post injury (DPI)) and chronic (18, 25, 43 DPI) time points. We hypothesized that diffuse TBI would alter circulating GH levels because of damage to the hypothalamus, specifically somatostatin neurons. Data were analyzed with generalized linear and mixed effects models with fixed effects interactions between the injury and time. Despite similar growth rates over time with age, TBI rats weighed less than shams at 18 DPI (postnatal day 35; P = 0.03, standardized effect size [d] = 1.24), which is around the onset of puberty. Compared to shams, GH levels were lower in the TBI group during the acute period (P = 0.196; d = 12.3) but higher in the TBI group during the chronic period (P = 0.10; d = 52.1). Although not statistically significant, TBI-induced differences in GH had large standardized effect sizes, indicating biological significance. The mean number of hypothalamic somatostatin neurons (an inhibitor of GH) positively predicted GH levels in the hypothalamus but did not predict GH levels in the somatosensory cortex. Understanding TBI-induced alterations in the GH axis may identify therapeutic targets to improve the quality of life of pediatric survivors of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Hormônio do Crescimento Humano , Animais , Ratos , Hormônio do Crescimento , Qualidade de Vida , Somatostatina
7.
Neurotrauma Rep ; 4(1): 284-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139183

RESUMO

To investigate microglial mechanisms in central and peripheral inflammation after experimental traumatic brain injury (TBI), we inhibited the colony-stimulating factor-1 receptor (CSF-1R) with PLX5622 (PLX). We hypothesized that microglia depletion would attenuate central inflammation acutely with no effect on peripheral inflammation. After randomization, male mice (n = 105) were fed PLX or control diets (21 days) and then received midline fluid percussion injury or sham injury. Brain and blood were collected at 1, 3, or 7 days post-injury (DPI). Immune cell populations were quantified in the brain and blood by flow cytometry. Cytokines (interleukin [IL]-6, IL-1ß, tumor necrosis factor-α, interferon-γ, IL-17A, and IL-10) were quantified in the blood using a multi-plex enzyme-linked immunosorbent assay. Data were analyzed using Bayesian multi-variate, multi-level models. PLX depleted microglia at all time points and reduced neutrophils in the brain at 7 DPI. PLX also depleted CD115+ monocytes, reduced myeloid cells, neutrophils, and Ly6Clow monocytes in blood, and elevated IL-6. TBI induced a central and peripheral immune response. TBI elevated leukocytes, microglia, and macrophages in the brain and elevated peripheral myeloid cells, neutrophils, Ly6Cint monocytes, and IL-1ß in the blood. TBI lowered peripheral CD115+ and Ly6Clow monocytes in the blood. TBI PLX mice had fewer leukocytes and microglia in the brain at 1 DPI, with elevated neutrophils at 7 DPI compared to TBI mice on a control diet. TBI PLX mice also had fewer peripheral myeloid cells, CD115+, and Ly6Clow monocytes in the blood at 3 DPI, but elevated Ly6Chigh, Ly6Cint, and CD115+ monocyte populations at 7 DPI, compared to TBI mice on a control diet. TBI PLX mice had elevated proinflammatory cytokines and lower anti-inflammatory cytokines in the blood at 7 DPI compared to TBI mice on a control diet. CSF-1R inhibition reduced the immune response to TBI at 1 and 3 DPI, but elevated peripheral inflammation at 7 DPI.

8.
Sci Rep ; 12(1): 18196, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307475

RESUMO

Microglial morphology is used to measure neuroinflammation and pathology. For reliable inference, it is critical that microglial morphology is accurately quantified and that results can be easily interpreted and compared across studies and laboratories. The process through which microglial morphology is quantified is a key methodological choice and little is known about how this choice may bias conclusions. We applied five of the most commonly used ImageJ-based methods for quantifying the microglial morphological response to a stimulus to identical photomicrographs and individual microglial cells isolated from these photomicrographs, which allowed for direct comparisons of results generated using these approaches. We found a lack of comparability across methods that analyzed full photomicrographs, with significant discrepancies in results among the five methods. Quantitative methods to analyze microglial morphology should be selected based on several criteria, and combinations of these methods may give the most biologically accurate representation of microglial morphology.


Assuntos
Microglia , Microglia/patologia , Viés , Padrões de Referência
9.
Front Neurosci ; 16: 972138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248637

RESUMO

The microglial response to a pathological microenvironment is hallmarked by a change in cellular morphology. Following a pathological stimulus, microglia become reactive and simultaneously divide to create daughter cells. Although a wide array of microglial morphologies has been observed, the exact functions of these distinct morphologies are unknown, as are the morphology and reactivity status of dividing microglia. In this study, we used kainic acid to trigger microglial activation and cell division. Following a cortical kainic acid injection, microglial morphology and proliferation were examined at 3 days post-injection using immunohistochemistry for ionized calcium binding adapter molecule 1 (Iba1) to stain for microglia, and KI67 as a marker of cell division. Individual microglial cells were isolated from photomicrographs and skeletal and fractal analyses were used to examine cell size and spatial complexity. We examined the morphology of microglia in both wildtype and microglia-specific tumor necrosis factor (TNF)-α knockout mice. Data were analyzed using generalized linear mixed models or a two-way ANOVA. We found that dividing microglia had a more reactive morphology (larger cell body area, longer cell perimeter, and less ramification) compared to microglia that were not dividing, regardless of microglial release of TNF-α. However, we also observed dividing microglia with a complex, more ramified morphology. Changes in microglial morphology and division were greatest near the kainic acid injection site. This study uses robust and quantitative techniques to better understand microglial cell division, morphology, and population dynamics, which are essential for the development of novel therapeutics that target microglia.

10.
Biology (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009868

RESUMO

Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.

11.
Exp Neurobiol ; 31(2): 105-115, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35673999

RESUMO

Traumatic brain injury (TBI) can affect different regions throughout the brain. Regions near the site of impact are the most vulnerable to injury. However, damage to distal regions occurs. We investigated progressive neuropathology in the dorsal hippocampus (near the impact) and cerebellum (distal to the impact) after diffuse TBI. Adult male rats were subjected to midline fluid percussion injury or sham injury. Brain tissue was stained by the amino cupric silver stain. Neuropathology was quantified in sub-regions of the dorsal hippocampus at 1, 7, and 28 days post-injury (DPI) and coronal cerebellar sections at 1, 2, and 7 DPI. The highest observed neuropathology in the dentate gyrus occurred at 7 DPI which attenuated by 28 DPI, whereas the highest observed neuropathology was at 1 DPI in the CA3 region. There was no significant neuropathology in the CA1 region at any time point. Neuropathology was increased at 7 DPI in the cerebellum compared to shams and stripes of pathology were observed in the molecular layer perpendicular to the cerebellar cortical surface. Together these data show that diffuse TBI can result in neuropathology across the brain. By describing the time course of pathology in response to TBI, it is possible to build the temporal profile of disease progression.

12.
Brain Res Bull ; 185: 117-128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537569

RESUMO

Following a traumatic brain injury (TBI), sleep-wake disturbances are one of the most prevalent and debilitating symptoms. A better understanding of the impact that sleep disturbances have on chronic TBI symptomatology is likely to maximize long-term recovery. While the current treatments of sleep-wake disturbances following TBI are disorder-specific, identifying the underlying pathology may lead to improved pharmacological and rehabilitative treatments. A TBI initiates secondary cellular and molecular cascades that include inflammation and the production of cytokines, as well endocrine dysfunction and concomitant disturbances in hormone secretions. Hormones and cytokines are mediators of the inflammatory response that also regulate endocrine function, thus, communication between the immune and endocrine systems is bidirectional. Interestingly, both the immune and endocrine systems play a critical role in sleep regulation. This narrative review summarizes sleep-wake disturbances reported after TBI and synthesizes the current human and animal literature centered on the hypothesis that immune-endocrine interactions after TBI may induce both acute and chronic disturbances of sleep and wakefulness. Furthermore, we discuss how the immune and endocrine systems may be plausible therapeutic targets to treat TBI-induced sleep disturbances.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos do Sono-Vigília , Animais , Lesões Encefálicas Traumáticas/complicações , Citocinas , Sistema Endócrino , Sono , Transtornos do Sono-Vigília/etiologia
13.
Biology (Basel) ; 11(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35453799

RESUMO

The objective of this study was to determine the prevalence of sleep-wake disturbances (SWD) following pediatric traumatic brain injury (TBI), and to examine characteristics of TBI and patient demographics that might be predictive of subsequent SWD development. This single-institution retrospective study included patients diagnosed with a TBI during 2008-2019 who also had a subsequent diagnosis of an SWD. Data were collected using ICD-9/10 codes for 207 patients and included the following: age at initial TBI, gender, TBI severity, number of TBIs diagnosed prior to SWD diagnosis, type of SWD, and time from initial TBI to SWD diagnosis. Multinomial logit and negative-binomial models were fit to investigate whether the multiple types of SWD and the time to onset of SWD following TBI could be predicted by patient variables. Distributions of SWD diagnosed after TBI were similar between genders. The probability of insomnia increased with increasing patient age. The probability of 'difficulty sleeping' was highest in 7-9 year-old TBI patients. Older TBI patients had shorter time to SWD onset than younger patients. Patients with severe TBI had the shortest time to SWD onset, whereas patients with mild or moderate TBI had comparable times to SWD onset. Multiple TBI characteristics and patient demographics were predictive of a subsequent SWD diagnosis in the pediatric population. This is an important step toward increasing education among providers, parents, and patients about the risk of developing SWD following TBI.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35237767

RESUMO

There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.

15.
J Interpers Violence ; 37(9-10): NP6785-NP6812, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33092447

RESUMO

Over half of fatal pediatric traumatic brain injuries are estimated to be the result of physical abuse, i.e., abusive head trauma (AHT). Although intimate partner violence (IPV) is a well-established risk for child maltreatment, little is known about IPV as an associated risk factor specifically for AHT. We performed a single-institution, retrospective review of all patients (0-17 years) diagnosed at a Level 1 pediatric trauma center with head trauma who had been referred to an in-hospital child protection team for suspicion of AHT between 2010 and 2016. Data on patient demographics, hospitalization, injury, family characteristics, sociobehavioral characteristics, physical examination, laboratory findings, imaging, discharge, and forensic determination of AHT were extracted from the institution's forensic registry. Descriptive statistics (mean, median), chi-square and Mann-Whitney U tests were used to compare patients with fatal head injuries to patients with nonfatal head injuries by clinical characteristics, family characteristics, and forensic determination. Multiple logistic regression was used to estimate adjusted odds ratios for the presence of IPV as an associated risk of AHT while controlling for other clinical and family factors. Of 804 patients with suspicion for AHT in the forensic registry, there were 240 patients with a forensic determination of AHT; 42 injuries were fatal. There were 101 families with a reported history of IPV; 64.4% of patients in families with reported IPV were <12 months of age. IPV was associated with a twofold increase in the risk of AHT (Exp(ß) = 2.3 [p = .02]). This study confirmed IPV was an associated risk factor for AHT in a single institution cohort of pediatric patients with both fatal and nonfatal injuries. Identifying IPV along with other family factors may improve detection and surveillance of AHT in medical settings and help reduce injury, disability, and death.


Assuntos
Maus-Tratos Infantis , Traumatismos Craniocerebrais , Violência por Parceiro Íntimo , Criança , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/diagnóstico , Traumatismos Craniocerebrais/epidemiologia , Humanos , Lactente , Abuso Físico , Fatores de Risco
16.
Front Neurol ; 12: 722526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566867

RESUMO

Traumatic brain injury (TBI) can occur at any age, from youth to the elderly, and its contribution to age-related neuropathology remains unknown. Few studies have investigated the relationship between age-at-injury and pathophysiology at a discrete biological age. In this study, we report the immunohistochemical analysis of naïve rat brains compared to those subjected to diffuse TBI by midline fluid percussion injury (mFPI) at post-natal day (PND) 17, PND35, 2-, 4-, or 6-months of age. All brains were collected when rats were 10-months of age (n = 6-7/group). Generalized linear mixed models were fitted to analyze binomial proportion and count data with R Studio. Amyloid precursor protein (APP) and neurofilament (SMI34, SMI32) neuronal pathology were counted in the corpus callosum (CC) and primary sensory barrel field (S1BF). Phosphorylated TAR DNA-binding protein 43 (pTDP-43) neuropathology was counted in the S1BF and hippocampus. There was a significantly greater extent of APP and SMI34 axonal pathology and pTDP-43 neuropathology following a TBI compared with naïves regardless of brain region or age-at-injury. However, age-at-injury did determine the extent of dendritic neurofilament (SMI32) pathology in the CC and S1BF where all brain-injured rats exhibited a greater extent of pathology compared with naïve. No significant differences were detected in the extent of astrocyte activation between brain-injured and naïve rats. Microglia counts were conducted in the S1BF, hippocampus, ventral posteromedial (VPM) nucleus, zona incerta, and posterior hypothalamic nucleus. There was a significantly greater proportion of deramified microglia, regardless of whether the TBI was recent or remote, but this only occurred in the S1BF and hippocampus. The proportion of microglia with colocalized CD68 and TREM2 in the S1BF was greater in all brain-injured rats compared with naïve, regardless of whether the TBI was recent or remote. Only rats with recent TBI exhibited a greater proportion of CD68-positive microglia compared with naive in the hippocampus and posterior hypothalamic nucleus. Whilst, only rats with a remote brain-injury displayed a greater proportion of microglia colocalized with TREM2 in the hippocampus. Thus, chronic alterations in neuronal and microglial characteristics are evident in the injured brain despite the recency of a diffuse brain injury.

17.
Neurotrauma Rep ; 2(1): 59-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34223546

RESUMO

Diffuse brain injury is better described as multi-focal, where pathology can be found adjacent to seemingly uninjured neural tissue. In experimental diffuse brain injury, pathology and pathophysiology have been reported far more lateral than predicted by the impact site. We hypothesized that local thickening of the rodent skull at the temporal ridges serves to focus the intracranial mechanical forces experienced during brain injury and generate predictable pathology. We demonstrated local thickening of the skull at the temporal ridges using contour analysis on magnetic resonance imaging. After diffuse brain injury induced by midline fluid percussion injury (mFPI), pathological foci along the anterior-posterior length of cortex under the temporal ridges were evident acutely (1, 2, and 7 days) and chronically (28 days) post-injury by deposition of argyophilic reaction product. Area CA3 of the hippocampus and lateral nuclei of the thalamus showed pathological change, suggesting that mechanical forces to or from the temporal ridges shear subcortical regions. A proposed model of mFPI biomechanics suggests that injury force vectors reflect off the skull base and radiate toward the temporal ridge, thereby injuring ventral thalamus, dorsolateral hippocampus, and sensorimotor cortex. Surgically thinning the temporal ridge before injury reduced injury-induced inflammation in the sensorimotor cortex. These data build evidence for temporal ridges of the rodent skull to contribute to the observed pathology, whether by focusing extracranial forces to enter the cranium or intracranial forces to escape the cranium. Pre-clinical investigations can take advantage of the predicted pathology to explore injury mechanisms and treatment efficacy.

18.
J Neurotrauma ; 38(20): 2862-2880, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34155930

RESUMO

Intimate partner violence (IPV) increases risk of traumatic brain injury (TBI). Physical assaults increase in frequency and intensity during pregnancy. The consequences of TBI during pregnancy (gravida TBI; gTBI) on offspring development is unknown, for which stress and inflammation during pregnancy worsen fetal developmental outcomes. We hypothesized that gTBI would lead to increased anxiety- and depression-related behavior, altered inflammatory responses and gut pathology, and distorted brain circuitry in mixed-sex offspring compared to mice born to control mothers. Pregnant dams received either diffuse TBI or sham injury (control) 12 days post-coitum. We found that male gTBI offspring were principal drivers of the gTBI effects on health, physiology, and behavior. For example, male, but not female, gTBI offspring weighed significantly less at weaning compared to male control offspring. At post-natal day (PND) 28, gTBI offspring had significantly weaker intralaminar connectivity onto layer 5 pre-frontal pyramidal neurons compared to control offspring. Neurological performance on anxiety-like behaviors was decreased, with only marginal differences in depressive-like behaviors, for gTBI offspring compared to control offspring. At PND42 and PND58, circulating neutrophil and monocyte populations were significantly smaller in gTBI male offspring than control male offspring. In response to a subsequent inflammatory challenge at PND75, gTBI offspring had significantly smaller circulating neutrophil populations than control offspring. Anxiety-like behaviors persisted during the immune challenge in gTBI offspring. However, spleen immune response and gut histology showed no significant differences between groups. The results compel further studies to determine the full extent of gTBI on fetal and maternal outcomes.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Complicações na Gravidez/imunologia , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/psicologia , Depressão/etiologia , Depressão/psicologia , Feminino , Saúde , Inflamação/imunologia , Contagem de Leucócitos , Masculino , Camundongos , Vias Neurais/patologia , Gravidez , Complicações na Gravidez/psicologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Células Piramidais/patologia , Caracteres Sexuais , Baço/imunologia
19.
J Neurotrauma ; 38(16): 2301-2310, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794670

RESUMO

Domestic violence (DV) is a chronic societal epidemic that often involves physical assault to the head, neck, and face, which increases the risk of traumatic brain injuries (TBIs) in DV victims. However, epidemiological data on the extent of TBI-DV at the population scale remain sparse. We performed a statewide, multi-institution, retrospective review of all medical records for patients diagnosed with a concussion, the most common type of TBI, at health care facilities in Arizona, USA, that were licensed by Arizona Department of Health Services (ADHS) during 2016-2018. De-identified records were extracted from discharge data reported to ADHS, which we decoded and transformed to spatiotemporal demographic data of patients who were diagnosed with concussion concurrent with DV. Among 72,307 concussion diagnoses, 940 were concurrent with DV. Sixteen patients died as a result of TBI-DV injuries, where TBI is defined as concussion. Although females were most of the TBI-DV diagnoses, median ages for males and females were 1 and 32 years, respectively, demonstrating that males were predominantly child abuse victims. Whites and Hispanics were victims most diagnosed with concussion and DV, but Native Americans and Blacks comprised a much greater proportion of diagnoses compared with the representative state demographics. Although likely underreported, approximately half of the cases were inflicted by intimate partners, which corresponded closely to marital status. Surprisingly, 61% of victims sought medical treatment for non-concussion injuries and then concussion was entered as a primary diagnosis. The demographic and health care facility disparities demand TBI/concussion screening in suspected DV patients, education and training of care providers, and potential redistribution of resources to select health care facilities.


Assuntos
Concussão Encefálica/diagnóstico , Concussão Encefálica/epidemiologia , Violência Doméstica/estatística & dados numéricos , Adolescente , Adulto , Distribuição por Idade , Idoso , Arizona/epidemiologia , Concussão Encefálica/terapia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Distribuição por Sexo , Análise Espacial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...