Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590218

RESUMO

Small mammal species play an important role influencing vegetation primary productivity and plant species composition, seed dispersal, soil structure, and as predator and/or prey species. Species which experience population dynamics cycles can, at high population phases, heavily impact agricultural sectors and promote rodent-borne disease transmission. To better understand the drivers behind small mammal distributions and abundances, and how these differ for individual species, it is necessary to characterise landscape variables important for the life cycles of the species in question. In this study, a suite of Earth observation derived metrics quantifying landscape characteristics and dynamics, and in-situ small mammal trapline and transect survey data, are used to generate random forest species distribution models for nine small mammal species for study sites in Narati, China and Sary Mogul, Kyrgyzstan. These species distribution models identify the important landscape proxy variables driving species abundance and distributions, in turn identifying the optimal conditions for each species. The observed relationships differed between species, with the number of landscape proxy variables identified as important for each species ranging from 3 for Microtus gregalis at Sary Mogul, to 26 for Ellobius tancrei at Narati. Results indicate that grasslands were predicted to hold higher abundances of Microtus obscurus, E. tancrei and Marmota baibacina, forest areas hold higher abundances of Myodes centralis and Sorex asper, with mixed forest-grassland boundary areas and areas close to watercourses predicted to hold higher abundances of Apodemus uralensis and Sicista tianshanica. Localised variability in vegetation and wetness conditions, as well as presence of certain habitat types, are also shown to influence these small mammal species abundances. Predictive application of the Random Forest (RF) models identified spatial hot-spots of high abundance, with model validation producing R2 values between 0.670 for M. gregalis transect data at Sary Mogul to 0.939 for E. tancrei transect data at Narati. This enhances previous work whereby optimal habitat was defined simply as presence of a given land cover type, and instead defines optimal habitat via a combination of important landscape dynamic variables, moving from a human-defined to species-defined perspective of optimal habitat. The species distribution models demonstrate differing distributions and abundances of host species across the study areas, utilising the strengths of Earth observation data to improve our understanding of landscape and ecological linkages to small mammal distributions and abundances.


Assuntos
Diretivas Antecipadas , Mamíferos , Humanos , Animais , Agricultura , Arvicolinae , Benchmarking , Marmota , Murinae
2.
Remote Sens Ecol Conserv ; 9(4): 483-500, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38505567

RESUMO

Birds are useful indicators of overall biodiversity, which continues to decline globally, despite targets to reduce its loss. The aim of this paper is to understand the importance of different spatial drivers for modelling bird distributions. Specifically, it assesses the importance of satellite-derived measures of habitat productivity, heterogeneity and landscape structure for modelling bird diversity across Great Britain. Random forest (RF) regression is used to assess the extent to which a combination of satellite-derived covariates explain woodland and farmland bird diversity and richness. Feature contribution analysis is then applied to assess the relationships between the response variable and the covariates in the final RF models. We show that much of the variation in farmland and woodland bird distributions is explained (R 2 0.64-0.77) using monthly habitat-specific productivity values and landscape structure (FRAGSTATS) metrics. The analysis highlights important spatial drivers of bird species richness and diversity, including high productivity grassland during spring for farmland birds and woodland patch edge length for woodland birds. The feature contribution provides insight into the form of the relationship between the spatial drivers and bird richness and diversity, including when a particular spatial driver affects bird richness positively or negatively. For example, for woodland bird diversity, the May 80th percentile Normalized Difference Vegetation Index (NDVI) for broadleaved woodland has a strong positive effect on bird richness when NDVI is >0.7 and a strong negative effect below. If relationships such as these are stable over time, they offer a useful analytical tool for understanding and comparing the influence of different spatial drivers.

3.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210172, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491602

RESUMO

Research into pollinators in managed landscapes has recently combined approaches of pollination ecology and landscape ecology, because key stressors are likely to interact across wide areas. While laboratory and field experiments are valuable for furthering understanding, studies are required to investigate the interacting drivers of pollinator health and diversity across a broader range of landscapes and a wider array of taxa. Here, we use a network of 96 study landscapes in six topographically diverse regions of Britain, to test the combined importance of honeybee density, insecticide loadings, floral resource availability and habitat diversity to pollinator communities. We also explore the interactions between these drivers and the cover and proximity of semi-natural habitat. We found that among our four drivers, only honeybee density was positively related to wild pollinator abundance and diversity, and the positive association between abundance and floral resources depended on insecticide loadings and habitat diversity. By contrast, our exploratory models including habitat composition metrics revealed a complex suite of interactive effects. These results demonstrate that improving pollinator community composition and health is unlikely to be achieved with general resource enhancements only. Rather, local land-use context should be considered in fine-tuning pollinator management and conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Agricultura , Inseticidas , Animais , Abelhas , Ecologia , Ecossistema , Polinização
4.
ACS Sens ; 3(10): 1894-2024, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30080029

RESUMO

Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.


Assuntos
Bactérias/isolamento & purificação , Armas Biológicas , Técnicas Biossensoriais/métodos , Vírus/isolamento & purificação , Armas Biológicas/classificação , Humanos , Imunoensaio , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Toxinas Biológicas/análise , Viroses/diagnóstico
5.
Nat Commun ; 9(1): 1799, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728580

RESUMO

The coupling of ordered electronic phases with lattice, spin, and orbital degrees of freedom are of central interest in strongly correlated systems. Their interplay has been intensively studied from femtosecond to picosecond time scales, while their dynamics beyond nanoseconds are usually assumed to follow lattice cooling. Here, we report an unusual slowing down of the recovery of an electronic phase across a first-order phase transition. Following optical excitation, the recovery time of both transient optical reflectivity and X-ray diffraction intensity from the charge-ordered superstructure in a La1/3Sr2/3FeO3 thin film increases by orders of magnitude as the sample temperature approaches the phase transition temperature. In this regime, the recovery time becomes much longer than the lattice cooling time. The combined experimental and theoretical investigation shows that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition.

6.
J Phys Chem Lett ; 9(2): 286-293, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29283580

RESUMO

Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine 2D CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300 to 700 K using static and transient spectroscopies as well as in situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission line width with temperature elevation up to ∼500 K, losing a factor of ∼8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ∼500 K yields thickness-dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the core-only NP morphology up to 555 and 600 K for the four and five monolayer NPs, respectively, followed by sintering and evaporation at still higher temperatures. Reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, results primarily from hole trapping in both NPs and sandwich NPs.

7.
ACS Nano ; 11(10): 10070-10076, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28846841

RESUMO

Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Reported here are the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Furthermore, the transient photoluminescence and the kinetics of dopant oxidation reveal the presence of two types of surface-bound ions that create midgap states.

8.
Nano Lett ; 17(9): 5314-5320, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28753318

RESUMO

Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts related to heating and peak amplitude reduction associated with lattice disordering are observed. For smaller NCs, melting initiates upon absorption of as few as ∼15 electron-hole pair excitations per NC on average (0.89 excitations/nm3 for a 1.5 nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structures following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. These findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.

9.
Ecol Evol ; 6(24): 8893-8902, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28035277

RESUMO

Hedges and lines of trees (woody linear features) are important boundaries that connect and enclose habitats, buffer the effects of land management, and enhance biodiversity in increasingly impoverished landscapes. Despite their acknowledged importance in the wider countryside, they are usually not considered in models of landscape function due to their linear nature and the difficulties of acquiring relevant data about their character, extent, and location. We present a model which uses national datasets to describe the distribution of woody linear features along boundaries in Great Britain. The method can be applied for other boundary types and in other locations around the world across a range of spatial scales where different types of linear feature can be separated using characteristics such as height or width. Satellite-derived Land Cover Map 2007 (LCM2007) provided the spatial framework for locating linear features and was used to screen out areas unsuitable for their occurrence, that is, offshore, urban, and forest areas. Similarly, Ordnance Survey Land-Form PANORAMA®, a digital terrain model, was used to screen out where they do not occur. The presence of woody linear features on boundaries was modelled using attributes from a canopy height dataset obtained by subtracting a digital terrain map (DTM) from a digital surface model (DSM). The performance of the model was evaluated against existing woody linear feature data in Countryside Survey across a range of scales. The results indicate that, despite some underestimation, this simple approach may provide valuable information on the extents and locations of woody linear features in the countryside at both local and national scales.

10.
Mater Today (Kidlington) ; 19(8): 464-477, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32288600

RESUMO

The danger posed by biological threat agents and the limitations of modern detection methods to rapidly identify them underpins the need for continued development of novel sensors. The application of nanomaterials to this problem in recent years has proven especially advantageous. By capitalizing on large surface/volume ratios, dispersability, beneficial physical and chemical properties, and unique nanoscale interactions, nanomaterial-based biosensors are being developed with sensitivity and accuracy that are starting to surpass traditional biothreat detection methods, yet do so with reduced sample volume, preparation time, and assay cost. In this review, we start with an overview of bioagents and then highlight the breadth of nanoscale sensors that have recently emerged for their detection.

11.
Sci Rep ; 5: 16650, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26586421

RESUMO

Through mapping of the spatiotemporal strain profile in ferroelectric BiFeO3 epitaxial thin films, we report an optically initiated dynamic enhancement of the strain gradient of 10(5)-10(6) m(-1) that lasts up to a few ns depending on the film thickness. Correlating with transient optical absorption measurements, the enhancement of the strain gradient is attributed to a piezoelectric effect driven by a transient screening field mediated by excitons. These findings not only demonstrate a new possible way of controlling the flexoelectric effect, but also reveal the important role of exciton dynamics in photostriction and photovoltaic effects in ferroelectrics.

12.
Nano Lett ; 15(10): 7161-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26397120

RESUMO

Botulinum neurotoxin (BoNT) presents a significant hazard under numerous realistic scenarios. The standard detection scheme for this fast-acting toxin is a lab-based mouse lethality assay that is sensitive and specific, but slow (∼2 days) and requires expert administration. As such, numerous efforts have aimed to decrease analysis time and reduce complexity. Here, we describe a sensitive ratiometric fluorescence resonance energy transfer scheme that utilizes highly photostable semiconductor quantum dot (QD) energy donors and chromophore conjugation to compact, single chain variable antibody fragments (scFvs) to yield a fast, fieldable sensor for BoNT with a 20-40 pM detection limit, toxin quantification, adjustable dynamic range, sensitivity in the presence of interferents, and sensing times as fast as 5 min. Through a combination of mutations, we achieve stabilized scFv denaturation temperatures of more than 60 °C, which bolsters fieldability. We also describe adaptation of the assay into a microarray format that offers persistent monitoring, reuse, and multiplexing.


Assuntos
Toxinas Botulínicas/análise , Pontos Quânticos , Radiometria/métodos , Anticorpos de Cadeia Única/química , Transferência Ressonante de Energia de Fluorescência , Limite de Detecção
13.
Nano Lett ; 15(10): 6848-54, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26414396

RESUMO

The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.


Assuntos
Sondas Moleculares , Pontos Quânticos , Semicondutores , Luminescência
14.
Langmuir ; 31(24): 6886-93, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26024323

RESUMO

Hydride-terminated silicon (Si) nanocrystals were capped with dodecanethiol by a thermally promoted thiolation reaction. Under an inert atmosphere, the thiol-capped nanocrystals exhibit photoluminescence (PL) properties similar to those of alkene-capped Si nanocrystals, including size-tunable emission wavelength, relatively high quantum yields (>10%), and long radiative lifetimes (26-280 µs). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed that the ligands attach to the nanocrystal surface via covalent Si-S bonds. The thiol-capping layer, however, readily undergoes hydrolysis and severe degradation in the presence of moisture. Dodecanethiol could be exchanged with dodecene by hydrosilylation for enhanced stability.

15.
Nat Mater ; 14(5): 484-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774956

RESUMO

Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting, wavelength downconversion in light-emitting diodes (LEDs), and optical biosensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells, non-contact chromophore pumping from a proximal LED, and markedly reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (0.12-1 ns; refs 7-9) do not outpace biexciton Auger recombination (0.01-0.1 ns; ref. 10), which impedes multiexciton-driven applications including electrically pumped lasers and carrier-multiplication-enhanced photovoltaics. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

16.
Methods Appl Fluoresc ; 3(4): 042006, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-29148511

RESUMO

Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.

17.
J Am Chem Soc ; 137(2): 742-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25531438

RESUMO

Three families of ZnTe magic-sized nanoclusters (MSNCs) were obtained exclusively using polytellurides as a tellurium precursor in a one-pot reaction by simply varying the reaction temperature and time only. Different ZnTe MSNCs exhibit different self-assembling or aggregation behavior, owing to their different structure, cluster size, and dipole-dipole interactions. The smallest family of ZnTe MSNCs (F323) does not reveal a crystalline structure and as a result assembles into lamellar triangle plates. Continuous heating of as synthesized ZnTe F323 assemblies resulted in the formation of ZnTe F398 MSNCs with wurzite structure and concomitant transformation into lamellar rectangle assemblies with the organization of nanoclusters along the ⟨002⟩ direction. Further annealing of ZnTe F398 assembled lamellar rectangles leads to full organization of MSNCs in all directions and formation of larger ZnTe F444 NCs that spontaneously form ultrathin nanowires following an oriented attachment mechanism. The key step in control over the size distribution of ZnTe ultrathin nanowires is, in fact, the growth mechanism of ZnTe F398 MSNCs; namely, the step growth mechanism enables formation of more uniform nanowires compared to those obtained by continuous growth mechanism. High yield of ZnTe nanowires is achieved as a result of the wurzite structure of F398 precursor. Transient absorption (TA) measurements show that all three families possess ultrafast dynamics of photogenerated electrons, despite their different crystalline structures.

18.
ACS Nano ; 8(9): 9219-23, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25181589

RESUMO

We report the photoluminescence (PL) properties of colloidal Si nanocrystals (NCs) up to 800 K and observe PL retention on par with core/shell structures of other compositions. These alkane-terminated Si NCs even emit at temperatures well above previously reported melting points for oxide-embedded particles. Using selected area electron diffraction (SAED), powder X-ray diffraction (XRD), liquid drop theory, and molecular dynamics (MD) simulations, we show that melting does not play a role at the temperatures explored experimentally in PL, and we observe a phase change to ß-SiC in the presence of an electron beam. Loss of diffraction peaks (melting) with recovery of diamond-phase silicon upon cooling is observed under inert atmosphere by XRD. We further show that surface passivation by covalently bound ligands endures the experimental temperatures. These findings point to covalently bound organic ligands as a route to the development of NCs for use in high temperature applications, including concentrated solar cells and electrical lighting.

19.
ACS Nano ; 8(8): 8334-43, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25010416

RESUMO

Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II-VI, III-V and IV-VI semiconductor quantum dots. Here, we use relatively unexplored IV/II-VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II-VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II-VI nanocrystals are reproducibly 1-3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II-VI nanocrystals. We expect this synthetic IV/II-VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

20.
J Am Chem Soc ; 136(6): 2342-50, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24443818

RESUMO

We report here detailed in situ studies of nucleation and growth of Au on CdSe/CdS nanorods using synchrotron SAXS technique and time-resolved spectroscopy. We examine structural and optical properties of CdSe/CdS/Au heterostructures formed under UV illumination. We compare the results for CdSe/CdS/Au heterostructures with the results of control experiments on CdSe/CdS nanorods exposed to gold precursor under conditions when no such heterostructures are formed (no UV illumination). Our data indicate similar photoluminescence (PL) quenching and PL decay profiles in both types of samples. Via transient absorption and PL, we show that such behavior is consistent with rapid (faster than 3 ps) hole trapping by gold-sulfur sites at the surface of semiconductor nanoparticles. This dominant process was overlooked in previous end-point studies on semiconductor/metal heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...