Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35962608

RESUMO

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Assuntos
Mirtilos Azuis (Planta) , Tetraploidia , Mirtilos Azuis (Planta)/genética , Padrões de Herança , Poliploidia , Cromossomos
3.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432881

RESUMO

The fertility and crossing behavior of a tetraploid hybrid of 4x Andean blueberry (V. meridionale) and lingonberry (V. vitis-idaea) was evaluated through a series of crosses. Crosses of the hybrid with highbush blueberry produced divergent results. When used as a female with V. corymbosum males, virtually all offspring were hexaploid, most likely arising from 2n = 4x = 48 female gametes, and 1n = 2x = 24 male gametes. However, when used as a male, tetraploid hybrids were produced, resulting from 1n = 2x = 24 gametes from each parent. To further examine this crossing behavior, the 4x V. meridionale­V. vitis-idaea interspecific hybrid was pollinated with 6x V. virgatum (rabbiteye blueberry). Analogous to the previous crosses, 7x hybrids were produced from the joining of 2n = 4x = 48 female gametes with 1n = 3x = 36 male gametes. Such reciprocal crossing asymmetry is unprecedented. The ability to produce both 6x and 4x offspring from the same V. corymbosum parents allows the potential of bridging a V. meridionale hybrid genotype to both the tetraploid (V. corymbosum) and hexaploid (V. virgatum) commercial crop levels.

4.
Hortic Res ; 9: uhac083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611183

RESUMO

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

5.
Front Plant Sci ; 12: 692628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234801

RESUMO

Genotyping by sequencing approaches have been widely applied in major crops and are now being used in horticultural crops like berries and fruit trees. As the original and largest producer of cultivated blueberry, the United States maintains the most diverse blueberry germplasm resources comprised of many species of different ploidy levels. We previously constructed an interspecific mapping population of diploid blueberry by crossing the parent F1#10 (Vaccinium darrowii Fla4B × diploid V. corymbosum W85-20) with the parent W85-23 (diploid V. corymbosum). Employing the Capture-Seq technology developed by RAPiD Genomics, with an emphasis on probes designed in predicted gene regions, 117 F1 progeny, the two parents, and two grandparents of this population were sequenced, yielding 131.7 Gbp clean sequenced reads. A total of 160,535 single nucleotide polymorphisms (SNPs), referenced to 4,522 blueberry genome sequence scaffolds, were identified and subjected to a parent-dependent sliding window approach to further genotype the population. Recombination breakpoints were determined and marker bins were deduced to construct a high density linkage map. Twelve blueberry linkage groups (LGs) consisting of 17,486 SNP markers were obtained, spanning a total genetic distance of 1,539.4 cM. Among 18 horticultural traits phenotyped in this population, quantitative trait loci (QTLs) that were significant over at least 2 years were identified for chilling requirement, cold hardiness, and fruit quality traits of color, scar size, and firmness. Interestingly, in 1 year, a QTL associated with timing of early bloom, full bloom, petal fall, and early green fruit was identified in the same region harboring the major QTL for chilling requirement. In summary, we report here the first high density bin map of a diploid blueberry mapping population and the identification of several horticulturally important QTLs.

6.
Data Brief ; 25: 104390, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31497632

RESUMO

Blueberry is an economically important berry crop. Both production and consumption of blueberries have increased sharply worldwide in recent years at least partly due to their known health benefits. The development of improved genomic resources for blueberry, such as a well-assembled genome and transcriptome, could accelerate breeding through genomic-assisted approaches. To enrich available transcriptome data and identify genes potentially involved in fruit quality, RNA sequencing was performed on fruit tissue from two northern-adapted hybrid blueberry breeding populations. RNA-seq was carried out using the Illumina HiSeqTM 2500 platform. Because of the absence of a reference-grade genome for blueberry, a transcriptome was de novo assembled from this RNA-seq data and other publicly available transcriptome data from blueberry downloaded from the National Center for Biotechnology Information (NCBI) Short Read Archive (SRA) using Trinity. After removing redundancy, this resulted in a dataset of 91,861 blueberry unigenes. This unigene dataset was functionally annotated using the NCBI-Nr protein database. All raw reads from the breeding populations were deposited in the NCBI SRA with accession numbers SRR6281886, SRR6281887, SRR6281888, and SRR6281889. The de novo transcriptome assembly was deposited at NCBI Transcriptome Shotgun Assembly (TSA) database with accession number GGAB00000000. These data will provide real expression evidence for the blueberry genome gene prediction and gene functional annotation and a reference transcriptome for future gene expression studies involving blueberry fruit.

7.
Sci Rep ; 8(1): 3429, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467425

RESUMO

Blueberry is an important crop worldwide. It is, however, susceptible to a variety of diseases, which can lead to losses in yield and fruit quality. Although screening studies have identified resistant germplasm for some important diseases, still little is known about the molecular basis underlying that resistance. The most predominant type of resistance (R) genes contains nucleotide binding site and leucine rich repeat (NBS-LRR) domains. The identification and characterization of such a gene family in blueberry would enhance the foundation of knowledge needed for its genetic improvement. In this study, we searched for and found a total of 106 NBS-encoding genes (including 97 NBS-LRR) in the current blueberry genome. The NBS genes were grouped into eleven distinct classes based on their domain architecture. More than 22% of the NBS genes are present in clusters. Ten genes were mapped onto seven linkage groups. Phylogenetic analysis grouped these genes into two major clusters based on their structural variation, the first cluster having toll and interleukin-1 like receptor (TIR) domains and most of the second cluster containing a coiled-coil domain. Our study provides new insight into the NBS gene family in blueberry and is an important resource for the identification of functional R-genes.


Assuntos
Mirtilos Azuis (Planta)/genética , Doenças das Plantas/genética , Resistência à Doença , Ligação Genética , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas
8.
PLoS One ; 12(5): e0177389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542212

RESUMO

To gain a better understanding of cold acclimation in rhododendron and in woody perennials in general, we used the 2D-DIGE technique to analyze the rhododendron proteome during the seasonal development of freezing tolerance. We selected two species varying in their cold acclimation ability as well as their thermonasty response (folding of leaves in response to low temperature). Proteins were extracted from leaves of non-acclimated (NA) and cold acclimated (CA) plants of the hardier thermonastic species, R. catawbiense (Cata.), and from leaves of cold acclimated plants of the less hardy, non-thermonastic R. ponticum (Pont.). All three protein samples (Cata.NA, Cata.CA, and Pont.CA) were labeled with different CyDyes and separated together on a single gel. Triplicate gels were run and protein profiles were compared resulting in the identification of 72 protein spots that consistently had different abundances in at least one pair-wise comparison. From the 72 differential spots, we chose 56 spots to excise and characterize further by mass spectrometry (MS). Changes in the proteome associated with the seasonal development of cold acclimation were identified from the Cata.CA-Cata.NA comparisons. Differentially abundant proteins associated with the acquisition of superior freezing tolerance and with the thermonastic response were identified from the Cata.CA-Pont.CA comparisons. Our results indicate that cold acclimation in rhododendron involves increases in abundance of several proteins related to stress (freezing/desiccation tolerance), energy and carbohydrate metabolism, regulation/signaling, secondary metabolism (possibly involving cell wall remodeling), and permeability of the cell membrane. Cold acclimation also involves decreases in abundance of several proteins involved in photosynthesis. Differences in freezing tolerance between genotypes can probably be attributed to observed differences in levels of proteins involved in these functions. Also differences in freezing tolerance may be attributed to higher levels of some constitutive protective proteins in Cata. than in Pont. that may be required to overcome freeze damage, such as glutathione peroxidase, glutamine synthetase, and a plastid-lipid-associated protein.


Assuntos
Aclimatação/fisiologia , Congelamento , Proteoma , Rhododendron/fisiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
9.
PLoS One ; 12(2): e0172674, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234977

RESUMO

The rumen is lined on the luminal side by a stratified squamous epithelium that is responsible for not only absorption, but also transport, extensive short-chain fatty acid (SCFA) metabolism and protection. Butyrate has been demonstrated to initiate the differentiation of the tissue following introduction of solid feed to the weaning neonate as well as affecting the metabolism of other nutrients and absorption of nutrients in in vitro experiments. The objective of the present study was to validate expression stability of eight putative reference genes bovine rumen, considering the intrinsic heterogeneity of bovine rumen with regard to different luminal characteristics due to direct infusion of butyrate to double the intra-ruminal content of the rumen liquor. Our focus was on identifying stable reference genes which are suitable to normalize real-time RT-qPCR experiments from rumen samples collected from clinical assays, irrespective of localization within the organ and the across physiological state. The most stably expressed genes included: ACTB, UXT, DBNDD2, RPS9, DDX54 and HMBS. Their high stability values suggest these reference genes will facilitate better evaluation of variation of across an array of conditions including: localization within the rumen, differences among cattle fed an array of rations, as well as response to development in the weaning animal. Moreover, we anticipate these reference genes may be useful for expression studies in other ruminants.


Assuntos
Butiratos/farmacologia , Epitélio/metabolismo , Absorção Gastrointestinal/genética , Genes Essenciais , Reação em Cadeia da Polimerase em Tempo Real/normas , Rúmen/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Butiratos/metabolismo , Bovinos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Padrões de Referência , Proteína S9 Ribossômica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Rúmen/efeitos dos fármacos , Rúmen/crescimento & desenvolvimento , Desmame
10.
Front Plant Sci ; 7: 271, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014296

RESUMO

The qPCR assay has become a routine technology in plant biotechnology and agricultural research. It is unlikely to be technically improved, but there are still challenges which center around minimizing the variability in results and transparency when reporting technical data in support of the conclusions of a study. There are a number of aspects of the pre- and post-assay workflow that contribute to variability of results. Here, through the study of the introduction of error in qPCR measurements at different stages of the workflow, we describe the most important causes of technical variability in a case study using blueberry. In this study, we found that the stage for which increasing the number of replicates would be the most beneficial depends on the tissue used. For example, we would recommend the use of more RT replicates when working with leaf tissue, while the use of more sampling (RNA extraction) replicates would be recommended when working with stems or fruits to obtain the most optimal results. The use of more qPCR replicates provides the least benefit as it is the most reproducible step. By knowing the distribution of error over an entire experiment and the costs at each step, we have developed a script to identify the optimal sampling plan within the limits of a given budget. These findings should help plant scientists improve the design of qPCR experiments and refine their laboratory practices in order to conduct qPCR assays in a more reliable-manner to produce more consistent and reproducible data.

11.
PLoS One ; 8(9): e73354, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058469

RESUMO

The advent of affordable Next Generation Sequencing technologies has had major impact on studies of many crop species, where access to genomic technologies and genome-scale data sets has been extremely limited until now. The recent development of genomic resources in blueberry will enable the application of high throughput gene expression approaches that should relatively quickly increase our understanding of blueberry physiology. These studies, however, require a highly accurate and robust workflow and make necessary the identification of reference genes with high expression stability for correct target gene normalization. To create a set of superior reference genes for blueberry expression analyses, we mined a publicly available transcriptome data set from blueberry for orthologs to a set of Arabidopsis genes that showed the most stable expression in a developmental series. In total, the expression stability of 13 putative reference genes was evaluated by qPCR and a set of new references with high stability values across a developmental series in fruits and floral buds of blueberry were identified. We also demonstrated the need to use at least two, preferably three, reference genes to avoid inconsistencies in results, even when superior reference genes are used. The new references identified here provide a valuable resource for accurate normalization of gene expression in Vaccinium spp. and may be useful for other members of the Ericaceae family as well.


Assuntos
Mirtilos Azuis (Planta)/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes Essenciais , Genes de Plantas , RNA de Plantas/genética , Arabidopsis/genética , Mineração de Dados , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/normas , Transcriptoma
12.
Theor Appl Genet ; 126(3): 673-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23224333

RESUMO

The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Sintenia , Vaccinium macrocarpon/genética , Arabidopsis/genética , Mirtilos Azuis (Planta)/genética , Cromossomos de Plantas/genética , Primers do DNA/genética , DNA de Plantas/genética , Bases de Dados Genéticas , Ligação Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Fenótipo , Análise de Sequência de DNA , Vitis/genética
13.
BMC Plant Biol ; 12: 46, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22471859

RESUMO

BACKGROUND: There has been increased consumption of blueberries in recent years fueled in part because of their many recognized health benefits. Blueberry fruit is very high in anthocyanins, which have been linked to improved night vision, prevention of macular degeneration, anti-cancer activity, and reduced risk of heart disease. Very few genomic resources have been available for blueberry, however. Further development of genomic resources like expressed sequence tags (ESTs), molecular markers, and genetic linkage maps could lead to more rapid genetic improvement. Marker-assisted selection could be used to combine traits for climatic adaptation with fruit and nutritional quality traits. RESULTS: Efforts to sequence the transcriptome of the commercial highbush blueberry (Vaccinium corymbosum) cultivar Bluecrop and use the sequences to identify genes associated with cold acclimation and fruit development and develop SSR markers for mapping studies are presented here. Transcriptome sequences were generated from blueberry fruit at different stages of development, flower buds at different stages of cold acclimation, and leaves by next-generation Roche 454 sequencing. Over 600,000 reads were assembled into approximately 15,000 contigs and 124,000 singletons. The assembled sequences were annotated and functionally mapped to Gene Ontology (GO) terms. Frequency of the most abundant sequences in each of the libraries was compared across all libraries to identify genes that are potentially differentially expressed during cold acclimation and fruit development. Real-time PCR was performed to confirm their differential expression patterns. Overall, 14 out of 17 of the genes examined had differential expression patterns similar to what was predicted from their reads alone. The assembled sequences were also mined for SSRs. From these sequences, 15,886 blueberry EST-SSR loci were identified. Primers were designed from 7,705 of the SSR-containing sequences with adequate flanking sequence. One hundred primer pairs were tested for amplification and polymorphism among parents of two blueberry populations currently being used for genetic linkage map construction. The tetraploid mapping population was based on a cross between the highbush cultivars Draper and Jewel (V. darrowii is also in the background of 'Jewel'). The diploid mapping population was based on a cross between an F1 hybrid of V. darrowii and diploid V. corymbosum and another diploid V. corymbosum. The overall amplification rate of the SSR primers was 68% and the polymorphism rate was 43%. CONCLUSIONS: These results indicate that this large collection of 454 ESTs will be a valuable resource for identifying genes that are potentially differentially expressed and play important roles in flower bud development, cold acclimation, chilling unit accumulation, and fruit development in blueberry and related species. In addition, the ESTs have already proved useful for the development of SSR and EST-PCR markers, and are currently being used for construction of genetic linkage maps in blueberry.


Assuntos
Aclimatação , Mirtilos Azuis (Planta)/genética , Flores/genética , Frutas/genética , Folhas de Planta/genética , Transcriptoma , Sequência de Bases , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/metabolismo , Temperatura Baixa , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Anotação de Sequência Molecular , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Homologia de Sequência do Ácido Nucleico
14.
BMC Plant Biol ; 8: 69, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18570660

RESUMO

BACKGROUND: The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. RESULTS: A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. CONCLUSION: This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry.


Assuntos
Etiquetas de Sequências Expressas , Sequências Repetitivas de Ácido Nucleico/genética , Rosaceae/genética , Biblioteca Gênica , Genótipo , Modelos Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
15.
BMC Plant Biol ; 7: 5, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17263892

RESUMO

BACKGROUND: Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG) was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry. DESCRIPTION: BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure. CONCLUSION: By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.


Assuntos
Mirtilos Azuis (Planta)/genética , Bases de Dados Genéticas , Genoma de Planta , Biblioteca Genômica , Etiquetas de Sequências Expressas
16.
Planta ; 225(3): 735-51, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16953429

RESUMO

Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.


Assuntos
Aclimatação/genética , Mirtilos Azuis (Planta)/genética , Temperatura Baixa , Perfilação da Expressão Gênica , Aclimatação/fisiologia , Northern Blotting , Mirtilos Azuis (Planta)/fisiologia , Congelamento , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos
17.
Plant Cell Environ ; 29(4): 558-70, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17080607

RESUMO

We have previously analysed expressed sequence tags (ESTs) from non-acclimated (NA) and cold-acclimated (CA) Rhododendron leaves, and identified highly abundant complementary DNAs (cDNAs) possibly involved in cold acclimation. A potentially significant, but relatively unexplored, application of these EST data sets is the study of moderately abundant cDNAs, such as those picked only 1-3 times from each Rhododendron EST library containing approximately 430 ESTs. Using statistical tests and Northern blots, we established that the probability of differential expression of moderately abundant cDNAs based on the EST data is, indeed, a reasonably accurate predictor of their 'true' upregulation or downregulation as 11 out of 13 cDNAs (85%) studied fit this criterion. The analyses also revealed four aspects of cold acclimation in Rhododendron leaf tissues. Firstly, the concomitant upregulation of long-chain acyl-coenzyme A (acyl-CoA) synthetase, CTP:cholinephosphate cytidylyltransferase and delta-12 fatty acid desaturase in CA leaf tissues suggests that phospholipid biosynthesis and desaturation are important components of cold hardening in Rhododendron. Secondly, upregulation of plastidic nicotinamide adenine dinucleotide phosphatemalic enzyme (NADP-ME) in CA tissues suggests that malate is an important source of acetyl-CoA used for fatty acid biosynthesis during cold acclimation. Thirdly, down-regulation of plasma membrane intrinsic protein (PIP)2-1 aquaporin and upregulation of gated outward rectifying K+ channel (GORK) in CA tissues may be associated with the protection of overwintering leaves from freeze-induced cellular dehydration. Fourthly, upregulation of coumarate 3-hydroxylase may be associated with cell wall thickening in CA tissues. Physiological implications of these results, which reveal potentially novel regulations of cold acclimation in overwintering woody evergreens, are discussed. This work highlights the importance of also investigating low/moderately abundant ESTs (in addition to highly abundant ones) in genomic studies, in that it offers an effective strategy for identifying stress-related genes, especially when large-scale cDNA sequencing/microarray studies are not possible.


Assuntos
Aclimatação , Temperatura Baixa , Etiquetas de Sequências Expressas , Genes de Plantas , Lignina/biossíntese , Fosfolipídeos/metabolismo , Rhododendron/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Aquaporinas/fisiologia , Transporte Biológico , Biologia Computacional , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/fisiologia , DNA Complementar/química , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Modelos Biológicos , Modelos Estatísticos , Fosfatidilcolinas/metabolismo , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Rhododendron/metabolismo , Rhododendron/fisiologia , Água/metabolismo
18.
Planta ; 221(3): 406-16, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15933892

RESUMO

An expressed sequence tag (EST) analysis approach was undertaken to identify major genes involved in cold acclimation of Rhododendron, a broad-leaf, woody evergreen species. Two cDNA libraries were constructed, one from winter-collected (cold-acclimated, CA; leaf freezing tolerance -53 degrees C) leaves, and the other from summer-collected (non-acclimated, NA; leaf freezing tolerance -7 degrees C) leaves of field-grown Rhododendron catawbiense plants. A total of 862 5'-end high-quality ESTs were generated by sequencing cDNA clones from the two libraries (423 from CA and 439 from NA library). Only about 6.3% of assembled unique transcripts were shared between the libraries, suggesting remarkable differences in gene expression between CA and NA leaves. Analysis of the relative frequency at which specific cDNAs were picked from each library indicated that four genes or gene families were highly abundant in the CA library including early light-induced proteins (ELIP), dehydrins/late embryogenesis abundant proteins (LEA), cytochrome P450, and beta-amylase. Similarly, seven genes or gene families were highly abundant in the NA library and included chlorophyll a/b-binding protein, NADH dehydrogenase subunit I, plastidic aldolase, and serine:glyoxylate aminotransferase, among others. Northern blot analyses for seven selected abundant genes confirmed their preferential expression in either CA or NA leaf tissues. Our results suggest that osmotic regulation, desiccation tolerance, photoinhibition tolerance, and photosynthesis adjustment are some of the key components of cold adaptation in Rhododendron.


Assuntos
Aclimatação , Temperatura Baixa , Etiquetas de Sequências Expressas , Folhas de Planta/genética , Rhododendron/genética , Northern Blotting , Análise por Conglomerados , Regulação para Baixo , Perfilação da Expressão Gênica , Biblioteca Gênica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...