Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(21): 215001, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231309

RESUMO

We investigate the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration. Such asymmetric light pulses may be exploited to obtain control over the electron-bunch-pointing direction and in our case allowed for reproducible electron-beam steering in an all-optical way within an 8 mrad opening window with respect to the initial laser axis. We also discovered evidence of collective electron-betatron oscillations due to off-axis electron injection into the wakefield induced by a pulse-front tilt. These findings are supported by 3D particle-in-cell simulations.

2.
Phys Rev Lett ; 101(8): 085002, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18764625

RESUMO

Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation.

3.
Phys Rev Lett ; 100(10): 105005, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352199

RESUMO

The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.

4.
Phys Rev Lett ; 98(2): 025002, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358614

RESUMO

Transverse interferometric measurements are presented of the plasma channel formed in a hydrogen-filled capillary discharge waveguide recently used to generate 1 GeV electrons in a laser-driven plasma accelerator for the first time. The measurements were found to be in good agreement with nonlocal thermal equilibrium simulations, but showed significant differences with the results of a quasistatic model developed by Bobrova et al. [Phys. Rev. E. 65, 016407 (2001)]. The measurements are used to determine scaling laws for the axial electron density and matched spot size of the plasma channel, enabling optimization of the channel to specific applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...