Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Am J Clin Exp Urol ; 11(6): 594-612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148936

RESUMO

Prostate cancer (PCa) is the second most common cancer and constitutes about 14.7% of total cancer cases. PCa is highly prevalent and more aggressive in African-American (AA) men than in European-American (EA) men. PCa tends to be highly heterogeneous, and its complex biology is not fully understood. We use metabolomics to better understand the mechanisms behind PCa progression and disparities in its clinical outcome. Adenosine deaminase (ADA) is a key enzyme in the purine metabolic pathway; it was found to be upregulated in PCa and is associated with higher-grade PCa and poor disease-free survival. The inosine-to-adenosine ratio, which is a surrogate for ADA activity was high in PCa patient urine and higher in AA PCa compared to EA PCa. To understand the significance of high ADA in PCa, we established ADA overexpression models and performed various in vitro and in vivo studies. Our studies have revealed that an acute increase in ADA expression during later stages of tumor development enhances in vivo growth in multiple pre-clinical models. Further analysis revealed that mTOR signaling activation could be associated with this tumor growth. Chronic ADA overexpression shows alterations in the cells' adhesion machinery and a decrease in cells' ability to adhere to the extracellular matrix in vitro. Losing cell-matrix interaction is critical for metastatic dissemination which suggests that ADA could potentially be involved in promoting metastasis. This is supported by the association of higher ADA expression with higher-grade tumors and poor patient survival. Overall, our findings suggest that increased ADA expression may promote PCa progression, specifically tumor growth and metastatic dissemination.

2.
J Bacteriol ; 205(11): e0031023, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905811

RESUMO

IMPORTANCE: With the lack of new antibiotics in the drug discovery pipeline, coupled with accelerated evolution of antibiotic resistance, new sources of antibiotics that target pathogens of clinical importance are paramount. Here, we use bacterial cytological profiling to identify the mechanism of action of the monounsaturated fatty acid (Z)-13-methyltetra-4-decenoic acid isolated from the marine bacterium Olleya marilimosa with antibacterial effects against Gram-positive bacteria. The fatty acid antibiotic was found to rapidly destabilize the cell membrane by pore formation and membrane aggregation in Bacillus subtilis, suggesting that this fatty acid may be a promising adjuvant used in combination to enhance antibiotic sensitivity.


Assuntos
Antibacterianos , Ácidos Graxos , Ácidos Graxos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias Gram-Positivas/metabolismo , Membrana Celular/metabolismo , Bacillus subtilis/metabolismo , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/metabolismo
3.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37215002

RESUMO

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex IHF and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two hybrid assays. We report direct interactions between succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions likely enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.

4.
Microbiol Resour Announc ; 12(2): e0087322, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36656017

RESUMO

Here, we announce the draft genome sequence of Vibrio parahaemolyticus strain PSU5579, isolated from a shrimp hatchery in southern Thailand during an outbreak of acute hepatopancreatic necrosis disease (AHPND). The genome contains 44 contigs with a sequence length of 5,229,426 bp, 4,861 coding sequences, and a G+C content of 45.3%.

5.
RSC Adv ; 12(53): 34531-34547, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545587

RESUMO

Vibriosis causes serious problems and economic loss in aquaculture and human health. Investigating natural products as antivibrio agents has gained more attention to combat vibriosis. The present review highlights the chemical diversity of antivibrio isolated from bacteria, fungi, plants, and marine organisms. Based on the study covering the literature from 1985-2021, the chemical diversity ranges from alkaloids, terpenoids, polyketides, sterols, and peptides. The mechanisms of action are included inhibiting growth, interfering with biofilm formation, and disrupting of quorum sensing. Relevant summaries focusing on the source organisms and the associated bioactivity of different chemical classes are also provided. Further research on in vivo studies, toxicity, and clinical is required for the application in aquaculture and human health.

6.
ACS Omega ; 7(40): 35677-35685, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249352

RESUMO

Infections caused by the bacterium Staphylococcus aureus continue to pose threats to human health and put a financial burden on the healthcare system. The overuse of antibiotics has contributed to mutations leading to the emergence of methicillin-resistant S. aureus, and there is a critical need for the discovery and development of new antibiotics to evade drug-resistant bacteria. Medicinal plants have shown promise as sources of new small-molecule therapeutics with potential uses against pathogenic infections. The principal Rhode Island secondary metabolite (PRISM) library is a botanical extract library generated from specimens in the URI Youngken Medicinal Garden by upper-division undergraduate students. PRISM extracts were screened for activity against strains of methicillin-susceptible S. aureus (MSSA). An extract generated from the tulip tree (Liriodendron tulipifera) demonstrated growth inhibition against MSSA, and a bioassay-guided approach identified a sesquiterpene lactone, laurenobiolide, as the active constituent. Intriguingly, its isomers, tulipinolide and epi-tulipinolide, lacked potent activity against MSSA. Laurenobiolide also proved to be more potent against MSSA than the structurally similar sesquiterpene lactones, costunolide and dehydrocostus lactone. Laurenobiolide was the most abundant in the twig bark of the tulip tree, supporting the twig bark's historical and cultural usage in poultices and teas.

7.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954173

RESUMO

Prostate cancer (PCa) is the second most diagnosed cancer in the United States and is associated with metabolic reprogramming and significant disparities in clinical outcomes among African American (AA) men. While the cause is likely multi-factorial, the precise reasons for this are unknown. Here, we identified a higher expression of the metabolic enzyme UGT2B28 in localized PCa and metastatic disease compared to benign adjacent tissue, in AA PCa compared to benign adjacent tissue, and in AA PCa compared to European American (EA) PCa. UGT2B28 was found to be regulated by both full-length androgen receptor (AR) and its splice variant, AR-v7. Genetic knockdown of UGT2B28 across multiple PCa cell lines (LNCaP, LAPC-4, and VCaP), both in androgen-replete and androgen-depleted states resulted in impaired 3D organoid formation and a significant delay in tumor take and growth rate of xenograft tumors, all of which were rescued by re-expression of UGT2B28. Taken together, our findings demonstrate a key role for the UGT2B28 gene in promoting prostate tumor growth.


Assuntos
Androgênios , Glucuronosiltransferase/metabolismo , Neoplasias da Próstata , Negro ou Afro-Americano/genética , Humanos , Masculino , Processos Neoplásicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Difosfato de Uridina
8.
Cell Commun Signal ; 20(1): 119, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948987

RESUMO

BACKGROUND: Bone metastatic prostate cancer does not completely respond to androgen-targeted therapy and generally evolves into lethal castration resistant prostate cancer (CRPC). Expression of AR-V7- a constitutively active, ligand independent splice variant of AR is one of the critical resistant mechanisms regulating metastatic CRPC. TNC is an extracellular matrix glycoprotein, crucial for prostate cancer progression, and associated with prostate cancer bone metastases. In this study, we investigated the mechanisms that regulate AR-V7 expression in prostate cancer cells interacting with osteogenic microenvironment including TNC. METHODS: Prostate cancer/preosteoblast heterotypical organoids were evaluated via immunofluorescence imaging and gene expression analysis using RT-qPCR to assess cellular compartmentalization, TNC localization, and to investigate regulation of AR-V7 in prostate cancer cells by preosteoblasts and hormone or antiandrogen action. Prostate cancer cells cultured on TNC were assessed using RT-qPCR, Western blotting, cycloheximide chase assay, and immunofluorescence imaging to evaluate (1) regulation of AR-V7, and (2) signaling pathways activated by TNC. Identified signaling pathway induced by TNC was targeted using siRNA and a small molecular inhibitor to investigate the role of TNC-induced signaling activation in regulation of AR-V7. Both AR-V7- and TNC-induced signaling effectors were targeted using siRNA, and TNC expression assessed to evaluate potential feedback regulation. RESULTS: Utilizing heterotypical organoids, we show that TNC is an integral component of prostate cancer interaction with preosteoblasts. Interaction with preosteoblasts upregulated both TNC and AR-V7 expression in prostate cancer cells which was suppressed by testosterone but elevated by antiandrogen enzalutamide. Interestingly, the results demonstrate that TNC-induced Src activation regulated AR-V7 expression, post-translational stability, and nuclear localization in prostate cancer cells. Treatment with TNC neutralizing antibody, Src knockdown, and inhibition of Src kinase activity repressed AR-V7 transcript and protein. Reciprocally, both activated Src and AR-V7 were observed to upregulate autocrine TNC gene expression in prostate cancer cells. CONCLUSION: Overall, the findings reveal that prostate cancer cell interactions with the cellular and ECM components in the osteogenic microenvironment plays critical role in regulating AR-V7 associated with metastatic CRPC. Video Abstract.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Antagonistas de Androgênios , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno , Receptores Androgênicos/metabolismo , Tenascina , Microambiente Tumoral
9.
Hum Pathol ; 122: 84-91, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176252

RESUMO

To develop and validate a new tissue-based biomarker that improves prediction of outcomes in localized prostate cancer by quantifying the host response to tumor. We use digital image analysis and machine learning to develop a biomarker of the prostate stroma called quantitative reactive stroma (qRS). qRS is a measure of percentage tumor area with a distinct, reactive stromal architecture. Kaplan Meier analysis was used to determine survival in a large retrospective cohort of radical prostatectomy samples. qRS was validated in two additional, distinct cohorts that include international cases and tissue from both radical prostatectomy and biopsy specimens. In the developmental cohort (Baylor College of Medicine, n = 482), patients whose tumor had qRS > 34% had increased risk of prostate cancer-specific death (HR 2.94; p = 0.039). This result was replicated in two validation cohorts, where patients with qRS > 34% had increased risk of prostate cancer-specific death (MEDVAMC; n = 332; HR 2.64; p = 0.02) and also biochemical recurrence (Canary; n = 988; HR 1.51; p = 0.001). By multivariate analysis, these associations were shown to hold independent predictive value when compared to currently used clinicopathologic factors including Gleason score and PSA. qRS is a new, validated biomarker that predicts prostate cancer death and biochemical recurrence across three distinct cohorts. It measures host-response rather than tumor-based characteristics, and provides information not represented by standard prognostic measurements.


Assuntos
Próstata , Neoplasias da Próstata , Biomarcadores Tumorais/análise , Humanos , Masculino , Recidiva Local de Neoplasia/patologia , Prognóstico , Próstata/patologia , Próstata/cirurgia , Antígeno Prostático Específico , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Estudos Retrospectivos
10.
Stem Cells ; 39(12): 1766-1777, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520582

RESUMO

Stromal cells in the tumor microenvironment regulate the immune landscape and tumor progression. Yet, the ontogeny and heterogeneity of reactive stromal cells within tumors is not well understood. Carcinoma-associated fibroblasts exhibiting an inflammatory phenotype (iCAFs) have been identified within multiple cancers; however, mechanisms that lead to their recruitment and differentiation also remain undefined. Targeting these mechanisms therapeutically may be important in managing cancer progression. Here, we identify the ELF3 transcription factor as the canonical mediator of IL-1α-induced differentiation of prostate mesenchymal stem cells to an iCAF phenotype, typical of the tumor microenvironment. Furthermore, IL-1α-induced iCAFs were subsequently refractive to TGF-ß1 induced trans-differentiation to a myofibroblast phenotype (myCAF), another key carcinoma-associated fibroblast subtype typical of reactive stroma in cancer. Restricted trans-differentiation was associated with phosphorylation of the YAP protein, indicating that interplay between ELF3 action and activation of the Hippo pathway are critical for restricting trans-differentiation of iCAFs. Together, these data show that the IL-1α/ELF3/YAP pathways are coordinate for regulating inflammatory carcinoma-associated fibroblast differentiation.


Assuntos
Fibroblastos Associados a Câncer , Proteínas de Ligação a DNA , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Fibroblastos Associados a Câncer/patologia , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Interleucina-1alfa/farmacologia , Masculino , Células-Tronco Mesenquimais/citologia , Próstata/citologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
11.
Cell Death Discov ; 7(1): 232, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482371

RESUMO

Myeloid-derived suppressor cells (MDSCs) promote immunosuppressive activities in the tumor microenvironment (TME), resulting in increased tumor burden and diminishing the anti-tumor response of immunotherapies. While primary and metastatic tumors are typically the focal points of therapeutic development, the immune cells of the TME are differentially programmed by the tissue of the metastatic site. In particular, MDSCs are programmed uniquely within different organs in the context of tumor progression. Given that MDSC plasticity is shaped by the surrounding environment, the proteomes of MDSCs from different metastatic sites are hypothesized to be unique. A bottom-up proteomics approach using sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to quantify the proteome of CD11b+ cells derived from murine liver metastases (LM) and lung metastases (LuM). A comparative proteomics workflow was employed to compare MDSC proteins from LuM (LuM-MDSC) and LM (LM-MDSC) while also elucidating common signaling pathways, protein function, and possible drug-protein interactions. SWATH-MS identified 2516 proteins from 200 µg of sample. Of the 2516 proteins, 2367 have matching transcriptomic data. Upregulated proteins from lung and liver-derived murine CD11b+ cells with matching mRNA transcriptomic data were categorized based on target knowledge and level of drug development. Comparative proteomic analysis demonstrates that liver and lung tumor-derived MDSCs have distinct proteomes that may be subject to pharmacologic manipulation.

12.
Microbiol Resour Announc ; 10(36): e0021221, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498923

RESUMO

We report the draft genome sequence for Pseudoalteromonas sp. strain JC3, an isolate obtained from an aquaculture facility for whiteleg shrimp (Litopenaeus vannamei). The JC3 genome suggests multiple mechanisms for microbial interactions, including a type VI secretion system and potential for antibiotic production.

13.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586682

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer death in American men. Androgen receptor (AR) signaling is essential for PCa cell growth/survival and remains a key therapeutic target for lethal castration-resistant PCa (CRPC). GATA2 is a pioneer transcription factor crucial for inducing AR expression/activation. We recently reported that MAPK4, an atypical MAPK, promotes tumor progression via noncanonical activation of AKT. Here, we demonstrated that MAPK4 activated AR by enhancing GATA2 transcriptional expression and stabilizing GATA2 protein through repression of GATA2 ubiquitination/degradation. MAPK4 expression correlated with AR activation in human CRPC. Concerted activation of both GATA2/AR and AKT by MAPK4 promoted PCa cell proliferation, anchorage-independent growth, xenograft growth, and castration resistance. Conversely, knockdown of MAPK4 decreased activation of both AR and AKT and inhibited PCa cell and xenograft growth, including castration-resistant growth. Both GATA2/AR and AKT activation were necessary for MAPK4 tumor-promoting activity. Interestingly, combined overexpression of GATA2 plus a constitutively activated AKT was sufficient to drive PCa growth and castration resistance, shedding light on an alternative, MAPK4-independent tumor-promoting pathway in human PCa. We concluded that MAPK4 promotes PCa growth and castration resistance by cooperating parallel pathways of activating GATA2/AR and AKT and that MAPK4 is a novel therapeutic target in PCa, especially CRPC.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/metabolismo , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/genética , RNA Helicases/genética , Receptores Androgênicos/genética
14.
J Antibiot (Tokyo) ; 74(6): 370-380, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580212

RESUMO

The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 µg ml-1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole's antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Antagonismo de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Parabenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
15.
Oncogene ; 40(3): 693-704, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230244

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that proliferate in the setting of cancer and have potent immunosuppressive functions hindering anti-tumor immunity. Here we establish that the immunologic landscape and tumor microenvironments (TME) vary between different organs which discretely shape MDSC repertoires. We found that pSTAT3 signaling exerts a dominant effect on MDSC programming in liver metastasis (LM). In contrast, in lung metastasis (LuM), MDSC programming is driven mainly by pSTAT5. Adoptive transfer of LM-MDSC into LuM resulted in a shift from pSTAT3 signaling to pSTAT5, in association with an overall shift toward lung MDSC programming. A shift from more immunosuppressive M-MDSC to G-MDSC, along with enhanced differentiation of MDSCs into pro-inflammatory M1 macrophages in LuM, indicated that MDSC plasticity and differentiation patterns are environmentally dependent. Using mass spectroscopy, we confirmed that LM-MDSCs showed enhanced expression of key proliferation pathway markers. This confirmed that liver-specific MDSC programing was comprehensive but reversible, implying that therapeutic targeting of LM-MDSC could prime the TME in a favorable manner. Our data suggest that MDSC programming in response to malignancy is highly dependent on organ-specific conditions and is modifiable.


Assuntos
Granulócitos/metabolismo , Neoplasias Pulmonares/metabolismo , Monócitos/metabolismo , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Granulócitos/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Monócitos/patologia , Células Supressoras Mieloides/patologia , Especificidade de Órgãos
16.
PLoS One ; 15(12): e0244587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378361

RESUMO

Our previous studies have shown that Zika virus (ZIKV) replicates in human prostate cells, suggesting that the prostate may serve as a long-term reservoir for virus transmission. Here, we demonstrated that the innate immune responses generated to three distinct ZIKV strains (all isolated from human serum) were significantly different and dependent on their passage history (in mosquito, monkey, or human cells). In addition, some of these phenotypic differences were reduced by a single additional cell culture passage, suggesting that viruses that have been passaged more than 3 times from the patient sample will no longer reflect natural phenotypes. Two of the ZIKV strains analyzed induced high levels of the IP-10 chemokine and IFNγ in human prostate epithelial and stromal mesenchymal stem cells. To further understand the importance of these innate responses on ZIKV replication, we measured the effects of IP-10 and its downstream receptor, CXCR3, on RNA and virus production in prostate cells. Treatment with IP-10, CXCR3 agonist, or CXCR3 antagonist significantly altered ZIKV viral gene expression, depending on their passage in cells of relevant hosts (mosquito or human). We detected differences in gene expression of two primary CXCR3 isoforms (CXCR3-A and CXCR3-B) on the two cell types, possibly explaining differences in viral output. Lastly, we examined the effects of IP-10, agonist, or antagonist on cell death and proliferation under physiologically relevant infection rates, and detected no significant differences. Although we did not measure protein expression directly, our results indicate that CXCR3 signaling may be a target for therapeutics, to ultimately stop sexual transmission of this virus.


Assuntos
Quimiocina CXCL10/metabolismo , Próstata/virologia , Receptores CXCR3/metabolismo , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Quimiocina CXCL10/genética , Culicidae/virologia , Regulação da Expressão Gênica , Haplorrinos/virologia , Humanos , Imunidade Inata , Masculino , Próstata/citologia , Próstata/imunologia , Receptores CXCR3/genética , Inoculações Seriadas , Transdução de Sinais , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
17.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32778561

RESUMO

Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


Assuntos
Infecções por Escherichia coli/microbiologia , Peptidoglicano/metabolismo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Antibacterianos/uso terapêutico , Divisão Celular , Células Epiteliais/microbiologia , Humanos , Percepção de Quorum , Escherichia coli Uropatogênica/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-32364084

RESUMO

BACKGROUND: Obesity has become a global issue, leading to increased risk of metabolic syndrome, which encompasses diabetes, cardiovascular disease, stroke, hypertension, and certain cancers. However, obesity is difficult to control through diet and exercise alone, as they are difficult to implement. OBJECTIVE: The objective of this review is to elucidate the active constituents that can be obtained from various natural sources that act as anti-obesity agents. Due to the global rise in the prevalence of obesity, an urgent need to prevent and control it has arisen. METHODS: For this review, we compiled information about natural anti-obesity products through an electronic search of the articles available via PubMed, Scopus, and other internet sources for the period 1975-2019 and included our own research. We analyzed and organized data on various natural products in popular use in addition to relevant pharmacognostic and biological studies. The products' mechanisms of action were also investigated. CONCLUSION: Consumption of diets that include high amounts of active anti-obesity natural compounds is a promising strategy for the suppression of lipid accumulation and adipogenesis in obese individuals.


Assuntos
Fármacos Antiobesidade/farmacologia , Organismos Aquáticos , Descoberta de Drogas , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/isolamento & purificação , Organismos Aquáticos/química , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , Extratos Vegetais/isolamento & purificação , Plantas/química , Redução de Peso/efeitos dos fármacos
19.
Heliyon ; 6(4): e03693, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32258515

RESUMO

Entamoeba histolytica infects 50 million people worldwide and causes 55 thousand fatalities every year. Current anti-amebic drugs (e.g. paromomycin) work either at the level of the intestinal lumen (where trophozoites proliferate via cell divisions) or on the invasive trophozoites that have penetrated the gut or colonized internal organs (e.g. metronidazole). Some of these drugs are highly toxic to patients, have generated trophozoite resistance, or caused mutations and cancer in laboratory animals. Thus, alternative anti-amebic compounds need to be identified to minimize the side effects (on patients) or resistance (by amebas) to current treatments. The literature suggests that anthraquinones (chemicals found in medicinal plants) have antibacterial, antiparasitic, anti-inflammatory and antioxidant properties. Here we provide experimental evidence that Chinese rhubarb (Rheum palmatum) leaves' extract (rich in the anthraquinone rhein) inhibits E. histolytica trophozoite growth in vitro. In addition, from a set of ten isolated/synthetic anthraquinones (which we suspected to have anti-amebic properties), four analogs (rhein; AHHDAC = 1-amino-4-hydroxy-9, 10-dioxo-9, 10-dihydro-anthracene-2-carboxylic acid; unisol blue AS; and sennoside B) efficiently inhibited amebic growth at EIC50 concentrations comparable to metronidazole. The mechanism of action of these compounds still needs to be determined, although anthraquinones might enhance the production of toxic oxygen metabolites as it has been suggested for various protists (e.g. Leishmania, Plasmodium, Trypanosoma). Our research is the first to explore anti-amebic effects of Chinese rhubarb leaves' extract and isolated/synthetic anthraquinones on pathogenic Entamoeba.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...