Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(7): e0017524, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38953644

RESUMO

Clostridioides difficile causes a serious diarrheal disease and is a common healthcare-associated bacterial pathogen. Although it has a major impact on human health, the mechanistic details of C. difficile intestinal colonization remain undefined. C. difficile is highly sensitive to oxygen and requires anaerobic conditions for in vitro growth. However, the mammalian gut is not devoid of oxygen, and C. difficile tolerates moderate oxidative stress in vivo. The C. difficile genome encodes several antioxidant proteins, including a predicted superoxide reductase (SOR) that is upregulated upon exposure to antimicrobial peptides. The goal of this study was to establish SOR enzymatic activity and assess its role in protecting C. difficile against oxygen exposure. Insertional inactivation of sor rendered C. difficile more sensitive to superoxide, indicating that SOR contributes to antioxidant defense. Heterologous C. difficile sor expression in Escherichia coli conferred protection against superoxide-dependent growth inhibition, and the corresponding cell lysates showed superoxide scavenging activity. Finally, a C. difficile SOR mutant exhibited global proteome changes under oxygen stress when compared to the parent strain. Collectively, our data establish the enzymatic activity of C. difficile SOR, confirm its role in protection against oxidative stress, and demonstrate SOR's broader impacts on the C. difficile vegetative cell proteome.IMPORTANCEClostridioides difficile is an important pathogen strongly associated with healthcare settings and capable of causing severe diarrheal disease. While considered a strict anaerobe in vitro, C. difficile has been shown to tolerate low levels of oxygen in the mammalian host. Among other well-characterized antioxidant proteins, the C. difficile genome encodes a predicted superoxide reductase (SOR), an understudied component of antioxidant defense in pathogens. The significance of the research reported herein is the characterization of SOR's enzymatic activity, including confirmation of its role in protecting C. difficile against oxidative stress. This furthers our understanding of C. difficile pathogenesis and presents a potential new avenue for targeted therapies.


Assuntos
Clostridioides difficile , Estresse Oxidativo , Oxigênio , Superóxidos , Clostridioides difficile/genética , Clostridioides difficile/enzimologia , Clostridioides difficile/metabolismo , Oxigênio/metabolismo , Superóxidos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Oxirredutases/metabolismo , Oxirredutases/genética , Regulação Bacteriana da Expressão Gênica
2.
Emerg Microbes Infect ; 11(1): 1982-1993, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35880487

RESUMO

Clostridioides difficile is a leading cause of healthcare-associated infections worldwide. Currently, there is a lack of consensus for an optimal diagnostic method for C. difficile infection (CDI). Multi-step diagnostic algorithms use enzyme immunosorbent analysis (EIA)-based detection of C. difficile toxins TcdA/TcdB in stool, premised on the rationale that EIA toxin-negative (Tox-) patients have less severe disease and shorter diarrhoea duration. The aim of this study was to characterize toxigenic (i.e. tcdA/tcdB-positive) C. difficile strains isolated from diarrheic patient stool with an EIA Tox- (i.e. "discrepant") CDI diagnostic test result. Recovered strains were DNA fingerprinted (ribotyped), subjected to multiple toxin, genome and proteome evaluations, and assessed for virulence. Overall, of 1243 C. difficile-positive patient stool specimens from Southern Arizona hospitals, 31% were discrepant. For RT027 (the most prevalent ribotype)-containing specimens, 34% were discrepant; the corresponding RT027 isolates were cytotoxic to cultured fibroblasts, but their total toxin levels were comparable to, or lower than, the historic low-toxin-producing C. difficile strain CD630. Nevertheless, these low-toxin RT027 strains (LT-027) exhibited similar lethality to a clade-matched high-toxin RT027 strain in Golden Syrian hamsters, and heightened colonization and persistence in mice. Genomics and proteomics analyses of LT-027 strains identified unique genes and altered protein abundances, respectively, relative to high-toxin RT027 strains. Collectively, our data highlight the robust virulence of LT-027 C. difficile, provide a strong argument for reconsidering the clinical significance of a Tox- EIA result, and underscore the potential limitations of current diagnostic protocols.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Clostridioides , Clostridioides difficile/genética , Camundongos , Virulência
3.
Front Microbiol ; 13: 871152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633701

RESUMO

The alternative sigma factor SigL (Sigma-54) facilitates bacterial adaptation to the extracellular environment by modulating the expression of defined gene subsets. A homolog of the gene encoding SigL is conserved in the diarrheagenic pathogen Clostridioides difficile. To explore the contribution of SigL to C. difficile biology, we generated sigL-disruption mutants (sigL::erm) in strains belonging to two phylogenetically distinct lineages-the human-relevant Ribotype 027 (strain BI-1) and the veterinary-relevant Ribotype 078 (strain CDC1). Comparative proteomics analyses of mutants and isogenic parental strains revealed lineage-specific SigL regulons. Concomitantly, loss of SigL resulted in pleiotropic and distinct phenotypic alterations in the two strains. Sporulation kinetics, biofilm formation, and cell surface-associated phenotypes were altered in CDC1 sigL::erm relative to the isogenic parent strain but remained unchanged in BI-1 sigL::erm. In contrast, secreted toxin levels were significantly elevated only in the BI-1 sigL::erm mutant relative to its isogenic parent. We also engineered SigL overexpressing strains and observed enhanced biofilm formation in the CDC1 background, and reduced spore titers as well as dampened sporulation kinetics in both strains. Thus, we contend that SigL is a key, pleiotropic regulator that dynamically influences C. difficile's virulence factor landscape, and thereby, its interactions with host tissues and co-resident microbes.

4.
Sci Rep ; 10(1): 22135, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335199

RESUMO

Clostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


Assuntos
Clostridioides difficile/classificação , Clostridioides difficile/genética , Genoma Bacteriano , Ilhas Genômicas , Genômica , Fenótipo , Filogenia , Ribotipagem , Animais , Antibacterianos/farmacologia , Arizona/epidemiologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Cricetinae , Infecção Hospitalar/epidemiologia , Farmacorresistência Bacteriana , Variação Genética , Genômica/métodos , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Vigilância em Saúde Pública , Ribotipagem/métodos
5.
Front Microbiol ; 9: 2080, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233548

RESUMO

Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.

6.
Cell Mol Gastroenterol Hepatol ; 6(2): 163-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003123

RESUMO

BACKGROUND & AIMS: The diarrheagenic pathogen, enteropathogenic Escherichia coli (EPEC), uses a type III secretion system to deliver effector molecules into intestinal epithelial cells (IECs). While exploring the basis for the lateral membrane separation of EPEC-infected IECs, we observed infection-induced loss of the desmosomal cadherin desmoglein-2 (DSG2). We sought to identify the molecule(s) involved in, and delineate the mechanisms and consequences of, EPEC-induced DSG2 loss. METHODS: DSG2 abundance and localization was monitored via immunoblotting and immunofluorescence, respectively. Junctional perturbations were visualized by electron microscopy, and cell-cell adhesion was assessed using dispase assays. EspH alanine-scan mutants as well as pharmacologic agents were used to evaluate impacts on desmosomal alterations. EPEC-mediated DSG2 loss, and its impact on bacterial colonization in vivo, was assessed using a murine model. RESULTS: The secreted virulence protein EspH mediates EPEC-induced DSG2 degradation, and contributes to desmosomal perturbation, loss of cell junction integrity, and barrier disruption in infected IECs. EspH sequesters Rho guanine nucleotide exchange factors and inhibits Rho guanosine triphosphatase signaling; EspH mutants impaired for Rho guanine nucleotide exchange factor interaction failed to inhibit RhoA or deplete DSG2. Cytotoxic necrotizing factor 1, which locks Rho guanosine triphosphatase in the active state, jasplakinolide, a molecule that promotes actin polymerization, and the lysosomal inhibitor bafilomycin A, respectively, rescued infected cells from EPEC-induced DSG2 loss. Wild-type EPEC, but not an espH-deficient strain, colonizes mouse intestines robustly, widens paracellular junctions, and induces DSG2 re-localization in vivo. CONCLUSIONS: Our studies define the mechanism and consequences of EPEC-induced desmosomal alterations in IECs. These perturbations contribute to the colonization and virulence of EPEC, and likely related pathogens.

7.
PLoS Pathog ; 12(10): e1005946, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27741317

RESUMO

Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/ultraestrutura , Clostridioides difficile/patogenicidade , Clostridioides difficile/ultraestrutura , Infecções por Clostridium/virologia , Fatores de Virulência/metabolismo , Animais , Parede Celular/química , Cricetinae , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mesocricetus , Microscopia Eletrônica , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Polissacarídeos/química , Polissacarídeos/metabolismo , Virulência
8.
PLoS One ; 10(4): e0124971, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922949

RESUMO

Clostridium difficile is responsible for 15-20% of antibiotic-associated diarrheas, and nearly all cases of pseudomembranous colitis. Among the cell wall proteins involved in the colonization process, Cwp84 is a protease that cleaves the S-layer protein SlpA into two subunits. A cwp84 mutant was previously shown to be affected for in vitro growth but not in its virulence in a hamster model. In this study, the cwp84 mutant elaborated biofilms with increased biomass compared with the parental strain, allowing the mutant to grow more robustly in the biofilm state. Proteomic analyses of the 630Δerm bacteria growing within the biofilm revealed the distribution of abundant proteins either in cell surface, matrix or supernatant fractions. Of note, the toxin TcdA was found in the biofilm matrix. Although the overall proteome differences between the cwp84 mutant and the parental strains were modest, there was still a significant impact on bacterial surface properties such as altered hydrophobicity. In vitro and in vivo competition assays revealed that the mutant was significantly impaired for growth only in the planktonic state, but not in biofilms or in vivo. Taken together, our results suggest that the phenotypes in the cwp84 mutant come from either the accumulation of uncleaved SlpA, or the ability of Cwp84 to cleave as yet undetermined proteins.


Assuntos
Clostridioides difficile/fisiologia , Cisteína Endopeptidases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biofilmes , Cisteína Endopeptidases/genética , Enterotoxinas/metabolismo , Trato Gastrointestinal/microbiologia , Interações Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Mutação , Proteoma/metabolismo , Proteômica
9.
PLoS One ; 8(11): e78404, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265687

RESUMO

Clostridium difficile is a leading cause of antibiotic-associated diarrhea, and a significant etiologic agent of healthcare-associated infections. The mechanisms of attachment and host colonization of C. difficile are not well defined. We hypothesize that non-toxin bacterial factors, especially those facilitating the interaction of C. difficile with the host gut, contribute to the initiation of C. difficile infection. In this work, we optimized a completely anaerobic, quantitative, epithelial-cell adherence assay for vegetative C. difficile cells, determined adherence proficiency under multiple conditions, and investigated C. difficile surface protein variation via immunological and DNA sequencing approaches focused on Surface-Layer Protein A (SlpA). In total, thirty-six epidemic-associated and non-epidemic associated C. difficile clinical isolates were tested in this study, and displayed intra- and inter-clade differences in attachment that were unrelated to toxin production. SlpA was a major contributor to bacterial adherence, and individual subunits of the protein (varying in sequence between strains) mediated host-cell attachment to different extents. Pre-treatment of host cells with crude or purified SlpA subunits, or incubation of vegetative bacteria with anti-SlpA antisera significantly reduced C. difficile attachment. SlpA-mediated adherence-interference correlated with the attachment efficiency of the strain from which the protein was derived, with maximal blockage observed when SlpA was derived from highly adherent strains. In addition, SlpA-containing preparations from a non-toxigenic strain effectively blocked adherence of a phylogenetically distant, epidemic-associated strain, and vice-versa. Taken together, these results suggest that SlpA plays a major role in C. difficile infection, and that it may represent an attractive target for interventions aimed at abrogating gut colonization by this pathogen.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/biossíntese , Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Células Epiteliais/microbiologia , Genótipo , Humanos , Especificidade da Espécie
10.
Anaerobe ; 18(6): 614-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23017940

RESUMO

Clostridium difficile is a leading cause of hospital-acquired bacterial infections in the United States, and the increased incidence of recurrent C. difficile infections is particularly problematic. The molecular mechanisms of C. difficile colonization, including its ability to evade host innate immune responses, is poorly understood. We hypothesized that epidemic-associated C. difficile clinical isolates would exhibit increased resistance to mammalian, gut-associated, cationic antimicrobial peptides such as the cathelicidin LL-37. Standardized susceptibility tests as well as comparative proteomic analyses revealed that C. difficile strains varied in their responses to LL-37, with epidemic-associated 027 ribotype isolates displaying greater resistance. Further, exposure of C. difficile strains to sub-lethal concentrations of LL-37 resulted in increased resistance to subsequent peptide challenge, suggesting the presence of inducible resistance mechanisms. Correspondingly, LL-37 exposure altered the C. difficile proteome, with marked changes in abundance of cell wall biosynthesis proteins, surface layer proteins, ABC transporters and lysine metabolism pathway components. Taken together, these results suggest that innate immune avoidance mechanisms could facilitate robust colonization by C. difficile.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Clostridioides difficile/química , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/microbiologia , Proteoma/análise , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/imunologia , Farmacorresistência Bacteriana , Humanos , Evasão da Resposta Imune , Testes de Sensibilidade Microbiana , Estados Unidos
11.
J Bacteriol ; 192(19): 4904-11, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675495

RESUMO

Toxigenic Clostridium difficile strains produce two toxins (TcdA and TcdB) during the stationary phase of growth and are the leading cause of antibiotic-associated diarrhea. C. difficile isolates of the molecular type NAP1/027/BI have been associated with severe disease and hospital outbreaks worldwide. It has been suggested that these "hypervirulent" strains produce larger amounts of toxin and that a mutation in a putative negative regulator (TcdC) allows toxin production at all growth phases. To rigorously explore this possibility, we conducted a quantitative examination of the toxin production of multiple hypervirulent and nonhypervirulent C. difficile strains. Toxin gene (tcdA and tcdB) and toxin gene regulator (tcdR and tcdC) expression was also monitored. To obtain additional correlates for the hypervirulence phenotype, sporulation kinetics and efficiency were measured. In the exponential phase, low basal levels of tcdA, tcdB, and tcdR expression were evident in both hypervirulent and nonhypervirulent strains, but contrary to previous assumptions, toxin levels were below the detectable thresholds. While hypervirulent strains displayed robust toxin production during the stationary phase of growth, the amounts were not significantly different from those of the nonhypervirulent strains tested; further, total toxin amounts were directly proportional to tcdA, tcdB, and tcdR gene expression. Interestingly, tcdC expression did not diminish in stationary phase, suggesting that TcdC may have a modulatory rather than a strictly repressive role. Comparative genomic analyses of the closely related nonhypervirulent strains VPI 10463 (the highest toxin producer) and 630 (the lowest toxin producer) revealed polymorphisms in the tcdR ribosome binding site and the tcdR-tcdB intergenic region, suggesting that a mechanistic basis for increased toxin production in VPI 10463 could be increased TcdR translation and read-through transcription of the tcdA and tcdB genes. Hypervirulent isolates produced significantly more spores, and did so earlier, than all other isolates. Increased sporulation, potentially in synergy with robust toxin production, may therefore contribute to the widespread disease now associated with hypervirulent C. difficile strains.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Proteínas Repressoras/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Enterotoxinas/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas Repressoras/genética , Esporos Bacterianos/genética , Virulência/genética , Virulência/fisiologia
12.
PLoS One ; 5(5): e10795, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20532244

RESUMO

Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes approximately 85 and approximately 70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne.


Assuntos
Clostridium perfringens/genética , Clostridium perfringens/patogenicidade , Enterite/veterinária , Loci Gênicos/genética , Ilhas Genômicas/genética , Doenças das Aves Domésticas/microbiologia , Animais , Sequência de Bases , Southern Blotting , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Eletroforese em Gel de Campo Pulsado , Enterite/microbiologia , Genes Bacterianos/genética , Variação Genética , Genoma Bacteriano/genética , Dados de Sequência Molecular , Plasmídeos/genética , Doenças das Aves Domésticas/genética , Análise de Sequência de DNA
13.
BMC Bioinformatics ; 10: 43, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19187558

RESUMO

BACKGROUND: Many studies have provided algorithms or methods to assess a statistical significance in quantitative proteomics when multiple replicates for a protein sample and a LC/MS analysis are available. But, confidence is still lacking in using datasets for a biological interpretation without protein sample replicates. Although a fold-change is a conventional threshold that can be used when there are no sample replicates, it does not provide an assessment of statistical significance such as a false discovery rate (FDR) which is an important indicator of the reliability to identify differentially expressed proteins. In this work, we investigate whether differentially expressed proteins can be detected with a statistical significance from a pair of unlabeled protein samples without replicates and with only duplicate LC/MS injections per sample. A FDR is used to gauge the statistical significance of the differentially expressed proteins. RESULTS: We have experimented to operate on several parameters to control a FDR, including a fold-change, a statistical test, and a minimum number of permuted significant pairings. Although none of these parameters alone gives a satisfactory control of a FDR, we find that a combination of these parameters provides a very effective means to control a FDR without compromising the sensitivity. The results suggest that it is possible to perform a significance analysis without protein sample replicates. Only duplicate LC/MS injections per sample are needed. We illustrate that differentially expressed proteins can be detected with a FDR between 0 and 15% at a positive rate of 4-16%. The method is evaluated for its sensitivity and specificity by a ROC analysis, and is further validated with a [15N]-labeled internal-standard protein sample and additional unlabeled protein sample replicates. CONCLUSION: We demonstrate that a statistical significance can be inferred without protein sample replicates in label-free quantitative proteomics. The approach described in this study would be useful in many exploratory experiments where a sample amount or instrument time is limited. Naturally, this method is also suitable for proteomics experiments where multiple sample replicates are available. It is simple, and is complementary to other more sophisticated algorithms that are not designed for dealing with a small number of sample replicates.


Assuntos
Proteoma , Proteômica/métodos , Algoritmos , Marcação por Isótopo , Proteômica/estatística & dados numéricos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/estatística & dados numéricos
14.
Int J Clin Exp Med ; 2(4): 309-28, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20057975

RESUMO

Acidity in vesicles of macrophages is a general signal that bacteria respond to during infection. Mycobacteria are particularly capable of resisting the acidification in macrophages that engulf the bacteria. In this work, we used label-free quantitative proteomics to study the Mycobacterium smegmatis proteome under acid stress so as to gain an insight into the acidic adaptation in mycobacteria. We quantified 1032 proteins. With a 3-fold change threshold, 20 and 52 proteins were found regulated at false discovery rates of 5% and 14% respectively. We performed a systems analysis based on gene ontology for the global proteome expression profile. We found that the most significant changes induced by the acid stress include a downregulation of transmembrane transporter activity and an upregulation of enzymes involved in fatty acid metabolism. The results suggest that reduced transmembrane transport and increased fatty acid metabolism probably contribute to or associate with acid tolerance in mycobacteria.

15.
BMC Bioinformatics ; 9: 187, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18402702

RESUMO

BACKGROUND: Although fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis. We explore the possibility of applying the Significance Analysis of Microarray (SAM) method (PNAS 98:5116-5121) to a differential proteomics problem of two samples with replicates. The quantitative proteomic analysis was carried out with nanoliquid chromatography/linear iron trap-Fourier transform mass spectrometry. The biological sample model included two Mycobacterium smegmatis unlabeled cell cultures grown at pH 5 and pH 7. The objective was to compare the protein relative abundance between the two unlabeled cell cultures, with an emphasis on significance analysis of protein differential expression using the SAM method. Results using the SAM method are compared with those obtained by fold change and the conventional t-test. RESULTS: We have applied the SAM method to solve the two-sample significance analysis problem in liquid chromatography/mass spectrometry (LC/MS) based quantitative proteomics. We grew the pH5 and pH7 unlabelled cell cultures in triplicate resulting in 6 biological replicates. Each biological replicate was mixed with a common 15N-labeled reference culture cells for normalization prior to SDS/PAGE fractionation and LC/MS analysis. For each biological replicate, one center SDS/PAGE gel fraction was selected for triplicate LC/MS analysis. There were 121 proteins quantified in at least 5 of the 6 biological replicates. Of these 121 proteins, 106 were significant in differential expression by the t-test (p < 0.05) based on peptide-level replicates, 54 were significant in differential expression by SAM with Delta = 0.68 cutoff and false positive rate at 5%, and 29 were significant in differential expression by the t-test (p < 0.05) based on protein-level replicates. The results indicate that SAM appears to overcome the false positives one encounters using the peptide-based t-test while allowing for identification of a greater number of differentially expressed proteins than the protein-based t-test. CONCLUSION: We demonstrate that the SAM method can be adapted for effective significance analysis of proteomic data. It provides much richer information about the protein differential expression profiles and is particularly useful in the estimation of false discovery rates and miss rates.


Assuntos
Cromatografia Líquida/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mapeamento de Peptídeos/métodos , Proteoma/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Algoritmos , Sequência de Aminoácidos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Anal Chem ; 80(2): 396-406, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18085750

RESUMO

We determined the global protein turnover profiles for Mycobacterium smegmatis under acid shock and iron starvation conditions using a simple (15)N isotope doping technique and a complete medium replacement method for chasing. We used a high-resolution hybrid-linear ion trap-Fourier transform mass spectrometer coupled with nanoliquid chromatography separation to measure protein turnover values for 151 proteins over a dynamic range of 3 orders of magnitude ranging from about 0.2 to 500. Of these 151 proteins, 31 had significant protein turnover changes (p <0.05) at both stress conditions and had protein turnover values increased or decreased by more than 2-fold under at least one stress condition. Protein turnover increased under acid shock for 28 of the 31 proteins but decreased under iron starvation for all the 31 proteins. Only two proteins had protein turnover lowered by more than 2-fold (p <0.05) under both stress conditions, including an ATP synthase F1 beta subunit (MSMEG4921; AtpD) and a catalase/peroxidase (MSMEG6346; KatG). KatG is required for in vivo activation of isoniazid to be bacterialcidal. Decrease of KatG protein turnover under both stress conditions supports the view that isoniazid may induce a dormancy program in mycobacteria, which in turn limits the efficacy of this drug against dormant subpopulation of mycobacteria. Thus, measuring protein turnover in stressed Mycobacterium cells has implications in understanding drug action and resistance mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Cromatografia Líquida , Interpretação Estatística de Dados , Análise de Fourier , Ferro/química , Isoniazida/farmacologia , Transferência Linear de Energia , Espectrometria de Massas , Mycobacterium smegmatis/efeitos dos fármacos
17.
Am J Hematol ; 82(11): 981-5, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17696208

RESUMO

The silencing of tumor suppressor genes associated with increased DNA methylation of the promoter regions is a frequent observation in many forms of cancer. Reactivation of these genes using pharmacological inhibitors of DNA methyltransferase such as 5-aza-2'-deoxycytidine (decitabine) is a worthwhile therapeutic goal. The effectiveness and tolerability of low-dose intravenous and subcutaneous decitabine regimens to demethylate and reactivate expression of the methylated gamma-globin gene in baboons and in patients with sickle cell disease led to successful trials of low-dose regimens of this drug in patients with myelodysplastic syndrome. Since these low-dose regimens are well-tolerated with minimal toxicity, they are suitable for chronic dosing to maintain promoter hypomethylation and expression of target genes. The development of an orally administered therapy using DNA methyltransferase inhibitors would facilitate such chronic approaches to therapy. We tested the ability of decitabine and a new salt derivative, decitabine mesylate, to reactivate the methylated gamma-globin gene in baboons when administered orally. Our results demonstrate that oral administration of these drugs at doses 17-34 times optimal subcutaneous doses of decitabine reactivates fetal hemoglobin, demethylates the epsilon- and gamma-globin gene promoters, and increases histone acetylation of these promoters in baboons (Papio anubis).


Assuntos
Azacitidina/análogos & derivados , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Hemoglobina Fetal , Inativação Gênica/efeitos dos fármacos , Administração Oral , Animais , Azacitidina/administração & dosagem , Azacitidina/farmacocinética , Decitabina , Hemoglobina Fetal/efeitos dos fármacos , Hemoglobina Fetal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Globinas/efeitos dos fármacos , Globinas/genética , Globinas/metabolismo , Papio anubis
18.
Hypertension ; 43(2): 282-5, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14718364

RESUMO

Aminopeptidase N (APN) is an abundant metallohydrolase in the brush border of kidney proximal tubule cells that degrades angiotensin III (Ang III) to angiotensin IV (Ang IV) and, along with dipeptidylaminopeptidase, degrades Ang IV. We examined the impact of a high-salt diet on renal APN activity and transcript abundance in the Sprague-Dawley and Dahl salt-sensitive (SS/Jr) rat strains. APN transcript abundance and protein abundance were approximately 2-fold greater (P<0.05; n=6) in the kidneys of Sprague-Dawley and Lewis rats ingesting 8% versus 0.3% salt diets, suggesting that increased aminopeptidase activity may contribute to decreased renal sodium uptake during adaptation to a high-salt diet. In contrast, renal APN transcript abundance and activity were the same in Dahl SS/Jr rats ingesting 8.0% versus 0.3% salt diets. The APN gene was mapped, using a radiation-hybrid panel, to known quantitative loci on chromosome 1 for blood pressure in the Dahl SS/Jr rat. The results suggest that the APN gene is a good candidate for salt-sensitivity in the Dahl SS/Jr rat.


Assuntos
Antígenos CD13/metabolismo , Hipertensão/enzimologia , Rim/enzimologia , Cloreto de Sódio/farmacologia , Administração Oral , Animais , Antígenos CD13/genética , Mapeamento Cromossômico , Hipertensão/genética , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem
19.
Hypertension ; 41(4): 874-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12642512

RESUMO

Serum and glucocorticoid-induced kinase 1 (SGK1) activates the epithelial sodium channel (eNaC) in tubules. We examined renal SGK1 abundance in salt-adaptation and in salt-sensitive hypertension. Sprague-Dawley and Dahl salt-sensitive rats were placed on either 8% or 0.3% NaCl diets for 10 days. Plasma aldosterone levels were approximately 2.5-fold greater on 0.3% versus 8% NaCl diets in both rat strains. Both serum and glucocorticoid-induced kinase 1 transcript and protein abundance were less (P<0.01) in Sprague-Dawley rats and greater (P<0.01) in Dahl salt-sensitive rats on 8% versus 0.3% NaCl diets. The cDNA sequences of serum and glucocorticoid-induced kinase 1 in both strains of rat were the same. The present results provide evidence that the abundance of serum and glucocorticoid-induced kinase 1 in rat kidney may play a role in salt adaptation and the pathogenesis of hypertension and suggests that aldosterone is not the primary inducer of SGK1 in the Sprague-Dawley rat.


Assuntos
Hipertensão/metabolismo , Rim/metabolismo , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/metabolismo , Cloreto de Sódio/farmacologia , Administração Oral , Aldosterona/sangue , Animais , Pressão Sanguínea , Regulação da Expressão Gênica , Hipertensão/genética , Hipertensão/fisiopatologia , Proteínas Imediatamente Precoces , Rim/efeitos dos fármacos , Masculino , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem
20.
Biochem Biophys Res Commun ; 296(3): 755-8, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12176047

RESUMO

Aquaporin-2 (AQP-2) is a vasopressin-regulated water channel in the kidney collecting duct. AQP-2 transcript has been identified by transcriptional profiling of rat kidneys as being regulated by dietary salt. We compared renal AQP-2 transcript expression in Sprague-Dawley and Dahl salt-sensitive (SS/Jr) rats using real-time RT-PCR. Expression of AQP-2 transcript is 5-fold less (P<0.01) in the Sprague-Dawley and 3-fold greater in Dahl SS/Jr rats (P<0.01) on high versus basal NaCl diets. The AQP-2 coded sequence was identical in Sprague-Dawley and Dahl SS/Jr rats. The present results provide evidence that: (1)AQP-2 plays a role in salt adaptation and (2) regulation of aquaporin transcript expression by salt is altered in the Dahl SS/Jr rat.


Assuntos
Aquaporinas/biossíntese , Hipertensão/metabolismo , Cloreto de Sódio/farmacologia , Adaptação Fisiológica , Administração Oral , Animais , Aquaporina 2 , Aquaporina 6 , Aquaporinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/genética , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA