Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(30): 12670-12678, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37465858

RESUMO

We report carrier relaxation dynamics in semiconducting tellurium nanowires (average diameter ∼ 10 nm) using ultrafast time-resolved terahertz spectroscopy. After photoexcitation using an 800 nm pump pulse, we observed an initial increase in the THz conductivity due to the absorption of THz radiation by photoexcited carriers. The time evolution of the differential conductivity (Δσ(τpp) = σpump on(τpp) - σpump off) shows a bi-exponential relaxation with the initial fast decay time scale of τ1 ∼ 25 ps followed by a longer relaxation time constant of τ2 ∼ 100 ps. Interestingly, the two time scales depend on the amount of the capping agent present on the surface of TeNWs, showing a faster relaxation of the photoexcited carriers as the percentage of capping decreases. This is physically interpreted as the surface state mediated relaxation mechanism of the photo-pumped carriers depending on the density of available surface states. A quantitative understanding is obtained using a coupled rate equation model taking into account the decay mechanisms determined from the surface mediated relaxation rate (DS) and direct recombination rate (DR) of the electron-hole pairs. Furthermore, the measured lattice temperature (TL) dependent dynamics, showing a faster relaxation at lower temperature, is understood using the same rate equation model, giving a power law dependence of the electron-hole recombination rate (DR) on TL as DR ∝ TL-1/2. This is explained by estimating DR using the van Roosbroeck-Shockley theory taking into account the density of states () of one-dimensional nanowires. Furthermore, to understand the measured frequency-dependent THz photoconductivity, we model Δσ(ω) using the Boltzmann transport equation taking into account the energy-dependent scattering rates showing the dominant role of short range (Γsr) and Coulomb scattering (ΓC) rates in the relaxation process, which further provides a measure of the charged and neutral impurity concentrations.

2.
Inorg Chem ; 62(19): 7304-7314, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125995

RESUMO

The ternary phase with the composition Ni3InSb has been synthesized by high-temperature synthesis and structurally characterized by a combination of X-ray analysis, neutron diffraction analysis, and theoretical calculations. The structure of Ni3InSb crystallizes in the orthorhombic space group Pnma with lattice constants a = 7.111(3) Å, b = 5.193(3) Å, and c = 8.2113(2) Å. The crystal structure contains ∼20 atoms in its unit cell, which are distributed over four crystallographically independent positions (two Ni, one In, and one Sb). The crystal structure can be considered as a ternary substitutional variant of Ni3Sn2 (Pnma, no. 62), where a trivalent In and a pentavalent Sb orderly occupy two tetravalent Sn sites of Ni3Sn2. This site decoration pattern of two neighboring elements, In and Sb, is unique and confirmed by first principles total energy calculations. The crystal structure can be described by two building units: Ni2Sb (building unit of Ni2In) and NiIn (NiAs-type). They alternate in the crystal structure and form infinite ac-slabs (puckered), and the slabs are stacked along [010]. A triangular lattice formed by Ni atoms indicates the existence of a geometrically frustrated structure. The calculated density of states and crystal orbital Hamilton population enlighten the stability and bonding characteristics of the structure. The temperature-dependent neutron diffraction study down to 5 K reveals that the crystal structure remains in the same orthorhombic symmetry with a weak anomaly in the lattice parameters at ∼100 K. Detailed temperature- and magnetic field-dependent magnetic properties of the title phase Ni3InSb show spin-glass- or spin-disorder-like behaviors below ∼300 K with an unusual magnetic behavior below 100 K, where an enhancement of magnetization with a decrease of the coercive field has been found.

3.
J Mater Chem A Mater ; 11(8): 4067-4077, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36846496

RESUMO

Nickel-iron layered double hydroxides are known to be one of the most highly active catalysts for the oxygen evolution reaction in alkaline conditions. The high electrocatalytic activity of the material however cannot be sustained within the active voltage window on timescales consistent with commercial requirements. The goal of this work is to identify and prove the source of inherent catalyst instability by tracking changes in the material during OER activity. By combining in situ and ex situ Raman analyses we elucidate long-term effects on the catalyst performance from a changing crystallographic phase. In particular, we attribute electrochemically stimulated compositional degradation at active sites as the principal cause of the sharp loss of activity from NiFe LDHs shortly after the alkaline cell is turned on. EDX, XPS, and EELS analyses performed after OER also reveal noticeable leaching of Fe metals compared to Ni, principally from highly active edge sites. In addition, post-cycle analysis identified a ferrihydrite by-product formed from the leached Fe. Density functional theory calculations shed light on the thermodynamic driving force for the leaching of Fe metals and propose a dissolution pathway which involves [FeO4]2- removal at relevant OER potentials.

4.
ACS Omega ; 8(1): 925-933, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643545

RESUMO

One of the weaknesses of silicon-based batteries is the rapid deterioration of the charge-storage capacity with increasing cycle numbers. Pure silicon anodes tend to suffer from poor cycling ability due to the pulverization of the crystal structure after repeated charge and discharge cycles. In this work, we present the synthesis of a hollow nanostructured SiO2 material for lithium-ion anode applications to counter this drawback. To improve the understanding of the synthesis route, the crucial synthesis step of removing the ZnO template core is shown using an in situ closed gas-cell sample holder for transmission electron microscopy. A direct visual observation of the removal of the ZnO template from the SiO2 shell is yet to be reported in the literature and is a critical step in understanding the mechanism by which these hollow nanostructures form from their core-shell precursors for future electrode material design. Using this unique technique, observation of dynamic phenomena at the individual particle scale is possible with simultaneous heating in a reactive gas environment. The electrochemical benefits of the hollow morphology are demonstrated with exceptional cycling performance, with capacity increasing with subsequent charge-discharge cycles. This demonstrates the criticality of nanostructured battery materials for the development of next-generation Li+-ion batteries.

5.
Small ; 18(39): e2203918, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36047959

RESUMO

Iron oxide (Fe2 O3 ) is an abundant and potentially low-cost material for fabricating lithium-ion battery anodes. Here, the growth of α-Fe2 O3 nano-flowers at an electrified liquid-liquid interface is demonstrated. Sonication is used to convert these flowers into quasi-2D platelets with lateral sizes in the range of hundreds of nanometers and thicknesses in the range of tens of nanometers. These nanoplatelets can be combined with carbon nanotubes to form porous, conductive composites which can be used as electrodes in lithium-ion batteries. Using a standard activation process, these anodes display good cycling stability, reasonable rate performance and low-rate capacities approaching 1500 mAh g-1 , consistent with the current state-of-the-art for Fe2 O3 . However, by using an extended activation process, it is found that the morphology of these composites can be significantly changed, rendering the iron oxide amorphous and significantly increasing the porosity and internal surface area. These morphological changes yield anodes with very good cycling stability and low-rate capacity exceeding 2000 mAh g-1 , which is competitive with the best anode materials in the literature. However, the data implies that, after activation, the iron oxide displays a reduced solid-state lithium-ion diffusion coefficient resulting in somewhat degraded rate performance.

6.
ACS Appl Energy Mater ; 5(2): 1922-1932, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252775

RESUMO

Developing a simple, cheap, and scalable synthetic method for the fabrication of functional nanomaterials is crucial. Carbon-based nanowire nanocomposites could play a key role in integrating group IV semiconducting nanomaterials as anodes into Li-ion batteries. Here, we report a very simple, one-pot solvothermal-like growth of carbonaceous germanium (C-Ge) nanowires in a supercritical solvent. C-Ge nanowires are grown just by heating (380-490 °C) a commercially sourced Ge precursor, diphenylgermane (DPG), in supercritical toluene, without any external catalysts or surfactants. The self-seeded nanowires are highly crystalline and very thin, with an average diameter between 11 and 19 nm. The amorphous carbonaceous layer coating on Ge nanowires is formed from the polymerization and condensation of light carbon compounds generated from the decomposition of DPG during the growth process. These carbonaceous Ge nanowires demonstrate impressive electrochemical performance as an anode material for Li-ion batteries with high specific charge values (>1200 mAh g-1 after 500 cycles), greater than most of the previously reported for other "binder-free" Ge nanowire anode materials, and exceptionally stable capacity retention. The high specific charge values and impressively stable capacity are due to the unique morphology and composition of the nanowires.

7.
Nanoscale ; 14(5): 2030-2040, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076045

RESUMO

New semiconducting materials, such as state-of-the-art alloys, engineered composites and allotropes of well-established materials can demonstrate unique physical properties and generate wide possibilities for a vast range of applications. Here we demonstrate, for the first time, the fabrication of a metastable allotrope of Ge, tetragonal germanium (ST12-Ge), in nanowire form. Nanowires were grown in a solvothermal-like single-pot method using supercritical toluene as a solvent, at moderate temperatures (290-330 °C) and a pressure of ∼48 bar. One-dimensional (1D) nanostructures of ST12-Ge were achieved via a self-seeded vapour-liquid-solid (VLS)-like paradigm, with the aid of an in situ formed amorphous carbonaceous layer. The ST12 phase of Ge nanowires is governed by the formation of this carbonaceous structure on the surface of the nanowires and the creation of Ge-C bonds. The crystalline phase and structure of the ST12-Ge nanowires were confirmed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The nanowires produced displayed a high aspect ratio, with a very narrow mean diameter of 9.0 ± 1.4 nm, and lengths beyond 4 µm. The ST12-Ge nanowire allotrope was found to have a profound effect on the intensity of the light emission and the directness of the bandgap, as confirmed by a temperature-dependent photoluminescence study.

8.
ACS Appl Mater Interfaces ; 13(28): 33112-33122, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34247478

RESUMO

Tweaking the electrolyte of the anode compartment of zinc-air battery (ZAB) system is shown to be extending the charge-discharge cyclability of the cell. An alkaline zinc (Zn)-air cell working for ∼32 h (192 cycles) without failure is extended to >55 h (>330 cycles) by modifying the anode compartment with a mixture electrolyte of KOH and LiOH. The cell containing the mixture electrolyte has a low overpotential for charging along with high discharge capacity. The role of Li+ ions in tuning the electrode morphology and electrodics is studied both theoretically and experimentally. The synergistic effect of Li+ and K+ ions in the electrolyte on improved ZAB performance is proven. This study can pave new ways for the commercial implementation of ZAB, where it has already proven its potential in low-cost, high energy density, and mobility applications.

10.
Nat Nanotechnol ; 16(5): 592-598, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33633405

RESUMO

Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order of magnitude in field-effect mobility (µFE), current ratio (ION/IOFF) and switching time (τS) for liquid-gated transistors, reaching 10-2 cm2 V-1 s-1, 104 and 18 ms, respectively. Our functionalization strategy is a universal route to simultaneously enhance the electronic connectivity in transition metal disulfide networks and tailor on demand their physicochemical properties according to the envisioned applications.

11.
ACS Nano ; 14(10): 13418-13432, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32960568

RESUMO

Over the past 15 years, two-dimensional (2D) materials have been studied and exploited for many applications. In many cases, 2D materials are formed by the exfoliation of layered crystals such as transition-metal disulfides. However, it has recently become clear that it is possible to exfoliate nonlayered materials so long as they have a nonisotropic bonding arrangement. Here, we report the synthesis of 2D-platelets from the earth-abundant, nonlayered metal sulfide, iron pyrite (FeS2), using liquid-phase exfoliation. The resultant 2D platelets exhibit the same crystal structure as bulk pyrite but are surface passivated with a density of 14 × 1018 groups/m2. They form stable suspensions in common solvents and can be size-selected and liquid processed. Although the platelets have relatively low aspect ratios (∼5), this is in line with the anisotropic cleavage energy of bulk FeS2. We observe size-dependent changes to optical properties leading to spectroscopic metrics that can be used to estimate the dimensions of platelets. These platelets can be used to produce lithium ion battery anodes with capacities approaching 1000 mAh/g.

12.
ACS Nano ; 14(5): 5909-5916, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32310636

RESUMO

Combining atomically thin layers of van der Waals (vdW) materials in a chosen vertical sequence is an emerging route to create devices with desired functionalities. While this method aims to exploit the individual properties of partnering layers, strong interlayer coupling can significantly alter their electronic and optical properties. Here we explored the impact of the vdW epitaxy on electrical transport in atomically thin molybdenum disulfide (MoS2) when it forms a vdW dimer with crystalline films of hexagonal boron nitride (hBN). We observe a thermal history-dependent long-term (over ∼40 h) current relaxation in the overlap region of MoS2/hBN heterostructures, which is absent in bare MoS2 layers (or homoepitaxial MoS2/MoS2 dimers) on the same substrate. Concurrent relaxation in the low-frequency Raman modes in MoS2 in the heterostructure region suggests a slow structural relaxation between trigonal and octahedral polymorphs of MoS2 as a likely driving mechanism that also results in inhomogeneous charge distribution in the MoS2 layer. Our experiment yields an aspect of vdW heteroepitaxy that can be generic to electrical devices with atomically thin transition-metal dichalcogenides.

13.
Nanoscale ; 11(46): 22423-22431, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31740914

RESUMO

Activity and long-term stability of oxide-metal heterostructure catalysts can be engineered through tuning the oxygen storage capacity (OSC) of the support and careful control of the composition of the supported metal nanoparticle. In this work, we probe these two factors for microwave-synthesized PtCu alloy nanoparticles supported on reduced-SrTiO3. The heterostructures are tested for their activity towards preferential CO oxidation in the presence of H2 at typical operating temperatures used for polymer electrolyte membrane fuel cells (PEMFCs). Through controlled temperature programmed reduction/temperature programmed oxidation (TPR/TPO) experiments, we show that the OSC of the support can be enhanced through heavy surface reduction of SrTiO3. Adsorption-desorption experiments establish the strikingly different CO adsorption behavior over monometallic Pt and PtCu alloy nanoparticles. Through detailed catalytic studies, we establish a trend in the selectivity and stability of CO conversions over the PtCu alloy catalysts that can indeed be tuned by varying the PtCu composition in a facile microwave synthesis.

14.
Nanoscale ; 11(3): 870-877, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30601560

RESUMO

Engineering the properties of layered metal dichalcogenides (LMDs) requires stringent control of their morphology. Herein, using a scalable one-step solvothermal technique, we report the synthesis of SnSe2 under two different conditions, leading to the formation of nanoflakes and nanoflowers. The use of oleic acid in the reaction leads to the formation of nanoflowers, and the presence of ethanol in the reaction medium leads to the formation of nanoflakes. Ab initio density functional theory calculations rationalise this observation, revealing a stronger adsorption of ethanol on the {0001} facet compared to the acid. Furthermore, these SnSe2 nanoflakes, when integrated with graphene, also respond to incident electromagnetic radiation, from the visible to near infrared regime, with a specific detectivity of ∼5 × 1010 Jones, which is comparable to that of the best available photodetectors, making them suitable for use in various technological applications.

15.
Nanoscale Adv ; 1(12): 4938-4946, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133134

RESUMO

Surface reducibility engineering is one of the vital tools to enhance the catalytic activity of materials. A heavy redox treatment can be utilized to affect the structure and surface of catalytic materials. Here, we choose SrTiO3 (STO) with a cubic perovskite structure as a system to induce oxygen vacancies by using nascent hydrogen from NaBH4 leading to a heavily reduced version of SrTiO3 (RSTO). To further understand the surface reduction and its dependence on foreign-ion (Ba) incorporation into SrTiO3, Sr0.5Ba0.5TiO3 (SBTO) and BaTiO3 (BTO) are synthesized using a facile hydrothermal method. The reduced version of the pristine and mixed oxide shows distinct optical absorptions, indicating oxygen vacancy-mediated reducibility engineering. Detailed CO oxidation experiments suggest the order of activity over the as-prepared and reduced supports as STO > SBTO > BTO and RSBTO > RSTO > RBTO, respectively. The interesting observation of reversal of CO oxidation activity over STO and SBTO after reduction negates the assumption of a similar intensity of reduction on the surfaces of these oxide supports. The fundamental aspect of surface reducibility is addressed using temperature programmed reduction/oxidation (TPR/TPO) and XPS.

16.
Nanoscale ; 10(34): 16321-16331, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30129965

RESUMO

A scalable approach is needed in the formation of atomically flat edges with specific terminations to enhance local properties for optoelectronic, nanophotonic and energy applications. We demonstrate point defect clustering-driven faceted void formations with luminescent enhanced edges in WS2 monolayers during large-scale CVD growth and controlled annealing. With the aid of aberration-corrected scanning transmission electron microscopy (AC-STEM) high angle annular dark field (HAADF) imaging, we probed atomic terminations of S and W to explain observed luminescence enhancement in alternate edges. Faceted void formation in monolayer WS2 was found to be sensitive to annealing temperature, time, gas environment and precursor supply. Our observations of areal coverage evolution over time revealed competition between monolayer WS2 growth and void formation at 850 °C. While the initial stage was dominated by monolayer growth, defect generation and void growth dominated at later stages and provided an optimum processing window for monolayer WS2 as well as faceted void growth. Growth of faceted voids not only followed the geometry of monolayer facets but also showed similar atomic terminations at the edges and thus enabled local manipulation of photoluminescence enhancement with an order of magnitude increase in intensity. The developed CVD processing enabled multi-fold increase in the luminescent active edge length through the formation of faceted voids within the WS2 monolayer.

17.
Nanoscale ; 9(27): 9284-9290, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28660963

RESUMO

The optoelectronic performance of hybrid devices from graphene and optically sensitive semiconductors exceeds conventional photodetectors due to a large in-built optical gain. Tellurium nanowire (TeNW), being a narrow direct band gap semiconductor (∼0.65 eV), is as an excellent potential candidate for near infra-red (NIR) detection. Here we demonstrate a new graphene-TeNW binary hybrid that exhibits a maximum photoresponsivity of ∼106 A W-1 at 175 K in the NIR regime (920 nm-1720 nm), which exceeds the photoresponsivity of the most common NIR photodetectors. The resulting noise-equivalent power (NEP) is as low as 2 × 10-18 W Hz-1/2, and the specific detectivity (D*) exceeds 5 × 1013 cm Hz1/2 W-1 (Jones). The temperature range of optimal operation, which extends up to ≈220 K and ≈260 K for 1720 nm and 920 nm excitation, respectively, is primarily limited by the electrical conductivity of the TeNW layer, and can further be improved by lowering of the defect density as well as inter-wire electronic coupling.

18.
Nanotechnology ; 28(27): 275402, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28557802

RESUMO

Due to dimensional confinement of carriers and non-trivial changes in the electronic structure, novel tunable transport properties manifest in nanoscale materials. Here, we report using first-principles density functional theory and non-equilibrium Green's function formalism, the occurrence of negative differential resistance (NDR) in armchair silicene nanoribbons (ASNRs). Interestingly, NDR manifests only in pristine [Formula: see text] ASNRs, where [Formula: see text]. We show that the origin of such a novel transport phenomenon lies in the bias-induced changes in the density of states of this particular family of nanoribbons. With increasing width of the nanoribbons belonging to this family, the peak-to-valley ratios of current decrease due to the increase in the number of sub-bands leading to a reduction in NDR. NDR is possible not only in [Formula: see text] ASNRs, but also in mixed configurations of armchair and zigzag silicene nanoribbons. This universality of NDR along with its unprecedented width-induced tunability can be useful for silicene-based low-power logic and memory applications.

19.
ACS Appl Mater Interfaces ; 9(23): 19462-19469, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28084716

RESUMO

Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO2 supports the appearance of a metallic state in NO2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.

20.
ACS Appl Mater Interfaces ; 7(48): 26430-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26571210

RESUMO

We report a facile synthesis of Zn2SiO4 nanotubes using a two-step process consisting of a wet-chemical synthesis of core-shell ZnO@SiO2 nanorods followed by thermal annealing. While annealing in air leads to the formation of hollow Zn2SiO4, annealing under reducing atmosphere leads to the formation of SiO2 nanotubes. We rationalize the formation of the silicate phase at temperatures much lower than the temperatures reported in the literature based on the porous nature of the silica shell on the ZnO nanorods. We present results from in situ transmission electron microscopy experiments to clearly show void nucleation at the interface between ZnO and the silica shell and the growth of the silicate phase by the Kirkendall effect. The porous nature of the silica shell is also responsible for the etching of the ZnO leading to the formation of silica nanotubes under reducing conditions. Both the hollow silica and silicate nanotubes exhibit good uranium sorption at different ranges of pH making them possible candidates for nuclear waste management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...