Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923935

RESUMO

SUMO modification is part of the spectrum of Ubiquitin-like (UBL) systems that give rise to proteoform complexity through post-translational modifications (PTMs). Proteoforms are essential modifiers of cell signaling for plant adaptation to changing environments. Exploration of the evolutionary emergence of Ubiquitin-like (UBL) systems unveils their origin from prokaryotes where it is linked to the mechanisms that enable sulfur uptake into biomolecules. We explore the emergence of the SUMO machinery across the plant lineage from single-cell to land plants. We reveal the evolutionary point at which plants acquired the ability to form SUMO chains through the emergence of SUMO E4 ligases hinting at its role in facilitating multicellularity. Additionally, we explore the possible mechanism for the neofunctionalization of SUMO proteases through the fusion of conserved catalytic domains with divergent sequences. We highlight the pivotal role of SUMO proteases in plant development and adaptation, offering new insights into target specificity mechanisms of SUMO modification during plant evolution. Correlating the emergence of adaptive traits in the plant lineage with established experimental evidence for SUMO in developmental processes we propose that SUMO modification has evolved to link developmental processes to adaptive functions in land plants.

3.
Front Plant Sci ; 15: 1274610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516661

RESUMO

Although rice is one of the main sources of calories for most of the world, nearly 60% of rice is grown in soils that are low in phosphorus especially in Asia and Africa. Given the limitations of bioavailable inorganic phosphate (Pi) in soils, it is important to develop crops tolerant to low phosphate in order to boost food security. Due to the immobile nature of Pi, plants have developed complex molecular signalling pathways that allow them to discern changes in Pi concentrations in the environment and adapt their growth and development. Recently, in rice, it was shown that a specific serine-threonine kinase known as Phosphorus-starvation tolerance 1 (PSTOL1) is important for conferring low phosphate tolerance in rice. Nonetheless, knowledge about the mechanism underpinning PSTOL1 activity in conferring low Pi tolerance is very limited in rice. Post-translation modifications (PTMs) play an important role in plants in providing a conduit to detect changes in the environment and influence molecular signalling pathways to adapt growth and development. In recent years, the PTM SUMOylation has been shown to be critical for plant growth and development. It is known that plants experience hyperSUMOylation of target proteins during phosphate starvation. Here, we demonstrate that PSTOL1 is SUMOylated in planta, and this affects its phosphorylation activity. Furthermore, we also provide new evidence for the role of SUMOylation in regulating PSTOL1 activity in plant responses to Pi starvation in rice and Arabidopsis. Our data indicated that overexpression of the non-SUMOylatable version of OsPSTOL1 negatively impacts total root length and total root surface area of rice grown under low Pi. Interestingly, our data also showed that overexpression of OsPSTOL1 in a non-cereal species, Arabidopsis, also positively impacts overall plant growth under low Pi by modulating root development. Taken together our data provide new evidence for the role of PSTOL1 SUMOylation in mediating enhanced root development for tolerating phosphate-limiting conditions.

4.
Int J Biol Macromol ; 264(Pt 2): 130733, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471610

RESUMO

Retrograded starches have received increasing attention due to their potential excipient properties in pharmaceutical formulations. However, to evade its application-oriented challenges, modification of retrograded starch is required. The study emphasizes influence of dry heating and the dual heat treatment by dry heating amalgamation with the vacuum heat treatment on quality parameters of retrograded starch. The starch was isolated by using two different extraction media (0.05 % w/v NaOH and 0.03 % citric acid) from Alocasia macrorrhizos and then retrograded separately. Further, retrograded starches were first modified by dry heating and afterwards modified with combination of dry and vacuum heating. Modification decreased moisture, ash content and increased solubility. Modified Samples from NaOH media had higher water holding capacity and amylose content. X-ray diffraction revealed type A and B crystals with increasing crystallinity of retrograded heat-modified samples from NaOH media. Thermogravimetric analysis, differential scanning calorimetry confirmed thermal stability. Shear tests showed shear-thinning behavior whereas dominant storage modulus (G/) over loss modulus (G//), depicting gel-like behavior. Storage, loss, and complex viscosity initially increased, then decreased with temperature. In-vitro release reflects, modified retrograded starches offers versatile drug release profiles, from controlled to rapid. Tailoring starch properties enables precise drug delivery, enhancing pharmaceutical formulation flexibility and efficacy.


Assuntos
Alocasia , Temperatura Alta , Hidróxido de Sódio , Vácuo , Amido/química , Amilose/química , Solubilidade , Viscosidade
5.
Int J Biol Macromol ; 246: 125705, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414314

RESUMO

The current work investigated the impact of different pressure processing times (5, 10, and 15 min) at 120 psi on the rheological behavior of a mixture of dry-heated Alocasia macrorrizhos starch with monosaccharide and disaccharide. Shear-thinning behavior was exhibited by the samples in steady shear evaluation and the highest viscosity was observed in the 15 min pressure treated samples. In the initial phase of amplitude sweep measurement, samples exhibited strain dependency but later they remain unaffected with applied deformation. The greater value of Storage modulus (G') than loss modulus (G″) (G' > G″) indicating the weak gel-like behavior. Increasing in pressure treatment duration enhanced the value of G' and G″ with applied frequency and found maximum at 15 min. In temperature sweep measurement the G', G″ as well as complex viscosity curves increased initially and then decreased after achieving peak temperature. However, the rheological parameters of the samples treated under long pressure processing time were found to be improved during temperature sweep measurements. The resulting extremely viscous, pressure-treated dry-heated Alocasia macrorrizhos starch-saccharides combination has a variety of uses in different pharmaceuticals as well as in food industries.


Assuntos
Alocasia , Humanos , Amido , Dissacarídeos , Monossacarídeos , Duração da Terapia , Reologia , Viscosidade
6.
Int J Biol Macromol ; 241: 124663, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119887

RESUMO

High viscous products made with starch are of great scientific interest in the food, pharmaceutical, and cosmetic industries because they can be used to make creams and gels, as well as functional foods and nutritional products. But, obtaining a good quality highly viscous materials represent a technological challenge. In this present study, the effect of high-pressure treatment at 120 psi for different time interval on the mixture of dry-heated alocasia starch in presence of monosaccharide and disaccharide was studied. A flow measurement test on the samples revealed their shear-thinning behavior. With 15 min of high-pressure processing time, the dry-heated starch and saccharide mixtures displayed the highest viscosity. The dynamic viscoelasticity measurement showed that the storage and loss modulus was enhanced significantly after high-pressure treatment, and all pressure-treated samples showed a gel-like structure (G/>G//). In temperature sweep measurement, the rheological profile of storage modulus, loss modulus, and complex viscosity exhibited a two-stage pattern, i.e., first increased, then decreased, and their values were enhanced significantly after pressure treatment. The resultant highly viscous dry-heated starch and saccharide system have various functionalities in diverse food and pharmaceutical products.


Assuntos
Alocasia , Amido , Amido/química , Dissacarídeos , Monossacarídeos , Viscosidade , Reologia
7.
Methods Mol Biol ; 2581: 109-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413314

RESUMO

The conjugation of SUMO can profoundly change the behavior of substrate proteins, impacting a wide variety of cellular responses. SUMO proteases are emerging as key regulators of plant adaptation to its environment because of their instrumental role in the SUMO deconjugation process. Here we describe how to express, purify, and determine SUMO deconjugation activity of a plant SUMO protease.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Plantas/genética , Plantas/metabolismo
8.
Plant Cell ; 34(8): 2892-2906, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567527

RESUMO

A key function of photoreceptor signaling is the coordinated regulation of a large number of genes to optimize plant growth and development. The basic helix loop helix (bHLH) transcription factor MYC2 is crucial for regulating gene expression in Arabidopsis thaliana during development in blue light. Here we demonstrate that blue light induces the SUMOylation of MYC2. Non-SUMOylatable MYC2 is less effective in suppressing blue light-mediated photomorphogenesis than wild-type (WT) MYC2. MYC2 interacts physically with the SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2. Blue light exposure promotes the degradation of SPF1 and SPF2 and enhances the SUMOylation of MYC2. Phenotypic analysis revealed that SPF1/SPF2 function redundantly as positive regulators of blue light-mediated photomorphogenesis. Our data demonstrate that SUMO conjugation does not affect the dimerization of MYC transcription factors but modulates the interaction of MYC2 with its cognate DNA cis-element and with the ubiquitin ligase Plant U-box 10 (PUB10). Finally, we show that non-SUMOylatable MYC2 is less stable and interacts more strongly with PUB10 than the WT. Taken together, we conclude that SUMO functions as a counterpoint to the ubiquitin-mediated degradation of MYC2, thereby enhancing its function in blue light signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Plântula/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinas/genética
9.
Mol Plant Microbe Interact ; 34(9): 1057-1070, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33934615

RESUMO

The long noncoding RNA ENOD40 is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether ENOD40 was required for aeschynomenoid nodule formation in Arachis hypogaea. AhENOD40 express from chromosome 5 (chr5) (AhENOD40-1) and chr15 (AhENOD40-2) during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of ENOD40 in A. hypogaea. Furthermore, we demonstrated several distinct characteristics of ENOD40. (i) Natural antisense transcript (NAT) of ENOD40 was detected from the AhENOD40-1 locus (designated as NAT-AhDONE40). (ii) Both AhENOD40-1 and AhENOD40-2 had two exons, whereas NAT-AhDONE40 was monoexonic. Reverse-transcription quantitative PCR analysis indicated both sense and antisense transcripts to be present in both cytoplasm and nucleus, and their expression increased with the progress of symbiosis. (iii) RNA pull-down from whole cell extracts of infected roots at 4 days postinfection indicated NAT-AhDONE40 to interact with the SET (Su(var)3-9, enhancer of Zeste and Trithorax) domain containing absent small homeotic disc (ASH) family protein AhASHR3 and this interaction was further validated using RNA immunoprecipitation and electrophoretic mobility shift assay. (iv) Chromatin immunoprecipitation assays indicate deposition of ASHR3-specific histone marks H3K36me3 and H3K4me3 in both of the ENOD40 loci during the progress of symbiosis. ASHR3 is known for its role in optimizing cell proliferation and reprogramming. Because both ASHR3 and ENOD40 from legumes cluster away from those in actinorhizal plants and other nonlegumes in phylogenetic distance trees, we hypothesize that the interaction of DONE40 with ASHR3 could have evolved for adapting the nodule organogenesis program for legumes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
RNA Longo não Codificante , Simbiose , Arachis/genética , Regulação da Expressão Gênica de Plantas , Domínios PR-SET , Filogenia , Proteínas de Plantas/genética , RNA Longo não Codificante/genética
10.
Cell Mol Life Sci ; 78(6): 2641-2664, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33452901

RESUMO

Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/metabolismo
11.
Biochim Biophys Acta Gene Regul Mech ; 1862(5): 582-597, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753903

RESUMO

Co-ordinated interplay between Polycomb group (PcG) and Trithorax group (TrxG) of proteins regulate chromatin state and maintain the transcription "off" and "on" state of a gene in higher eukaryotes. Targeting PcG complex to a specific locus is mediated by DNA sequences known as Polycomb response elements. Interestingly, these PREs are also recognized by TrxG proteins to antagonise PcG mediated gene repression. In this study, we have characterised DNA binding property of rice trithorax group factor ULTRAPETALA1 (OsULT1) which has a SAND domain and B-box motif. Chromatin immunoprecipitation assay indicates cold induced enrichment of OsULT1 occupancy and a decrease in H3K27me3 mark in the promoter region of OsDREB1b gene, during transcription activation. OsULT1 binds to the cis motif "GAGAG", and the sequence specificity is contributed mainly by the SAND domain. GAGAG is one of the cis motifs present in PREs that are recognized by Drosophila GAGA factor and Pipsqueak. Thus, binding of OsULT1 to GAGAG motif, along with a decrease in H3K27me3 suggests that OsULT1 antagonises the repressive effect of PcG complex for transcriptional activation of OsDREB1b. Moreover, OsULT1 interacts with rice SET domain-containing methyltransferase TRX1, suggesting OsULT1 is an integral part of plant Trithorax group complex. Furthermore, the increase in ULT1 levels during environmental cues suggests its involvement in the transcriptional regulation of stress responsive genes. Collectively, these results suggest that the antagonistic functions of PcG and TrxG proteins and the mechanism of recruitment of these complexes to target loci are evolutionarily conserved for gene expression regulation across kingdoms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Elementos de Resposta , Sítios de Ligação , Temperatura Baixa , DNA de Plantas/química , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histona Metiltransferases/metabolismo , Motivos de Nucleotídeos , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Multimerização Proteica , Estresse Fisiológico/genética , Fatores de Transcrição/genética
12.
Plant Mol Biol ; 95(1-2): 63-88, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28741224

RESUMO

Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.


Assuntos
Metilação de DNA/genética , Loci Gênicos , Histonas/metabolismo , Oryza/genética , Oryza/fisiologia , Processamento de Proteína Pós-Traducional , Salinidade , Estresse Fisiológico/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lisina/metabolismo , Modelos Biológicos , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
Plant Mol Biol ; 92(3): 371-88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503561

RESUMO

ARID-HMG DNA-binding proteins represent a novel group of HMG-box containing protein family where the AT-rich interaction domain (ARID) is fused with the HMG-box domain in a single polypeptide chain. ARID-HMG proteins are highly plant specific with homologs found both in flowering plants as well as in moss such as Physcomitrella. The expression of these proteins is ubiquitous in plant tissues and primarily localises in the cell nucleus. HMGB proteins are involved in several nuclear processes, but the role of ARID-HMG proteins in plants remains poorly explored. Here, we performed DNA-protein interaction studies with Arabidopsis ARID-HMG protein HMGB11 (At1g55650) to understand the functionality of this protein and its individual domains. DNA binding assays revealed that AtHMGB11 can bind double-stranded DNA with a weaker affinity (Kd = 475 ± 17.9 nM) compared to Arabidopsis HMGB1 protein (Kd = 39.8 ± 2.68 nM). AtHMGB11 also prefers AT-rich DNA as a substrate and shows structural bias for supercoiled DNA. Molecular docking of the DNA-AtHMGB11 complex indicated that the protein interacts with the DNA major groove, mainly through its ARID domain and the junction region connecting the ARID and the HMG-box domain. Also, predicted by the docking model, mutation of Lys(85) from the ARID domain and Arg(199) & Lys(202) from the junction region affects the DNA binding affinity of AtHMGB11. In addition, AtHMGB11 and its truncated form containing the HMG-box domain can not only promote DNA mini-circle formation but are also capable of inducing negative supercoils into relaxed plasmid DNA suggesting the involvement of this protein in several nuclear events. Overall, the study signifies that both the ARID and the HMG-box domain contribute to the optimal functioning of ARID-HMG protein in vivo.

15.
PLoS One ; 9(6): e100343, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940877

RESUMO

The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼ 700 bp upstream region of OsDREB1b shows two positioned nucleosomes between -610 to -258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription "off" state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Nucleossomos/química , Oryza/genética , Fatores de Transcrição/genética , Transcrição Gênica , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina/genética , Temperatura Baixa , Sequência Conservada , Secas , Histonas/metabolismo , Dados de Sequência Molecular , Nucleossomos/metabolismo , Oryza/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Salinidade , Estresse Fisiológico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA