Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809979

RESUMO

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Assuntos
Acetatos , Linfócitos T CD8-Positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetatos/metabolismo , Camundongos , Listeriose/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Listeria monocytogenes , Ciclo do Ácido Cítrico , Glucose/metabolismo , Camundongos Endogâmicos C57BL
3.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333111

RESUMO

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

4.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393414

RESUMO

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , MicroRNAs/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
5.
Cell Rep ; 38(9): 110446, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235777

RESUMO

The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8+ T cell homeostasis. We further identify creatine kinase B (CKB) as the creatine kinase isoenzyme that supports these T cell properties. Loss of the creatine transporter (Slc6a8) or Ckb results in compromised CD8+ T cell expansion in response to infection without influencing adenylate energy charge. Rather, loss of Slc6a8 or Ckb disrupts naive T cell homeostasis and weakens TCR-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling required for CD8+ T cell expansion. These data demonstrate a cell-intrinsic role for creatine transport and creatine transphosphorylation, independent of their effects on global cellular energy charge, in supporting CD8+ T cell homeostasis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Creatina , Creatina/metabolismo , Creatina Quinase/metabolismo , Fosforilação , Transdução de Sinais
6.
Cell Rep ; 31(5): 107585, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375032

RESUMO

Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/metabolismo , Ativação Linfocitária/genética , MicroRNAs/genética , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Humanos , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
7.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023446

RESUMO

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Assuntos
Encefalomielite Autoimune Experimental , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Metionina , Esclerose Múltipla , Células Th17/metabolismo , Animais , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacologia , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Células Th17/citologia
8.
J Biol Chem ; 294(51): 19785-19794, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31694919

RESUMO

Upon immune recognition of viruses, the mammalian innate immune response activates a complex signal transduction network to combat infection. This activation requires phosphorylation of key transcription factors regulating IFN production and signaling, including IFN regulatory factor 3 (IRF3) and STAT1. The mechanisms regulating these STAT1 and IRF3 phosphorylation events remain unclear. Here, using human and mouse cell lines along with gene microarrays, quantitative RT-PCR, viral infection and plaque assays, and reporter gene assays, we demonstrate that a microRNA cluster conserved among bilaterian animals, encoding miR-96, miR-182, and miR-183, regulates IFN signaling. In particular, we observed that the miR-183 cluster promotes IFN production and signaling, mediated by enhancing IRF3 and STAT1 phosphorylation. We also found that the miR-183 cluster activates the IFN pathway and inhibits vesicular stomatitis virus infection by directly targeting several negative regulators of IRF3 and STAT1 activities, including protein phosphatase 2A (PPP2CA) and tripartite motif-containing 27 (TRIM27). Overall, our work reveals an important role of the evolutionarily conserved miR-183 cluster in the regulation of mammalian innate immunity.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Fator de Transcrição STAT1/metabolismo , Células A549 , Animais , Fibroblastos/imunologia , Fibroblastos/virologia , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Interferons/imunologia , Células MCF-7 , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Transdução de Sinais , Replicação Viral
9.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747582

RESUMO

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Ativação Linfocitária/imunologia , Metaboloma , Metabolômica , Animais , Proliferação de Células , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Metabolômica/métodos , Camundongos , Estresse Oxidativo , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
10.
Cancer Res ; 79(3): 445-451, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573521

RESUMO

Memory CD8+ T cells (Tmem) are superior mediators of adoptive cell therapy (ACT) compared with effector CD8+ T cells (Teff) due to increased persistence in vivo. Underpinning Tmem survival is a shift in cellular metabolism away from aerobic glycolysis towards fatty acid oxidation (FAO). Here we investigated the impact of the peroxisome proliferator-activated receptor (PPAR) agonist GW501516 (GW), an agent known to boost FAO in other tissues, on CD8+ T-cell metabolism, function, and efficacy in a murine ACT model. Via activation of both PPARα and PPARδ/ß, GW treatment increased expression of carnitine palmitoyl transferase 1a, the rate-limiting enzyme of FAO, in activated CD8+ T cells. Using a metabolomics approach, we demonstrated that GW increased the abundance of multiple different acylcarnitines, consistent with enhanced FAO. T cells activated in the presence of GW and inflammatory signals, either mature dendritic cells or IL12, also demonstrated enhanced production of IFNγ and expression of T-bet. Despite high expression of T-bet, a characteristic of short-lived effector cells, GW-treated cells demonstrated enhanced persistence in vivo and superior efficacy in a model of ACT. Collectively, these data identify combined PPARα and PPARδ/ß agonists as attractive candidates for further studies and rapid translation into clinical trials of ACT. SIGNIFICANCE: Dual activation of peroxisome proliferator-activated receptors α and δ improves the efficacy of adoptive cell therapy by reprogramming T-cell metabolism and cytokine expression.


Assuntos
Imunoterapia Adotiva , Inflamação/genética , Neoplasias/genética , PPAR alfa/genética , PPAR delta/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/terapia , Interferon gama/genética , Interleucina-12/genética , Interleucina-12/imunologia , Metabolismo dos Lipídeos/genética , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Oxirredução , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR beta/agonistas , PPAR beta/genética , Tiazóis/uso terapêutico
11.
Cell Metab ; 28(3): 504-515.e7, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30043753

RESUMO

T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.


Assuntos
Acetil-CoA Carboxilase/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Carnitina O-Palmitoiltransferase/fisiologia , Compostos de Epóxi/farmacologia , Ácidos Graxos/metabolismo , Memória Imunológica/efeitos dos fármacos , Mitocôndrias/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
12.
Sci Immunol ; 3(23)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752301

RESUMO

Mycobacterium tuberculosis (Mtb) is one of the most ancient human pathogens, yet the exact mechanism(s) of host defense against Mtb remains unclear. Although one-third of the world's population is chronically infected with Mtb, only 5 to 10% develop active disease. This indicates that, in addition to resistance mechanisms that control bacterial burden, the host has also evolved strategies to tolerate the presence of Mtb to limit disease severity. We identify mitochondrial cyclophilin D (CypD) as a critical checkpoint of T cell metabolism that controls the expansion of activated T cells. Although loss of CypD function in T cells led to enhanced Mtb antigen-specific T cell responses, this increased T cell response had no impact on bacterial burden. Rather, mice containing CypD-deficient T cells exhibited substantially compromised disease tolerance and succumbed to Mtb infection. This study establishes a mechanistic link between T cell-mediated immunity and disease tolerance during Mtb infection.


Assuntos
Ciclofilinas/imunologia , Mitocôndrias/imunologia , Linfócitos T/imunologia , Tuberculose Pulmonar/imunologia , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis
13.
J Immunother ; 41(3): 125-129, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29293165

RESUMO

Anticancer vaccination is becoming a popular therapeutic approach for patients with cancers expressing common tumor antigens. One variation on this strategy is a heterologous virus vaccine where 2 viruses encoding the same tumor antigen are administered sequentially to prime and boost antitumor immunity. This approach is currently undergoing clinical investigation using an adenovirus (Ad) and the oncolytic virus Maraba (MRB). In this study, we show that Listeria monocytogenes can be used in place of the Ad to obtain comparable immune priming efficiency before MRB boosting. Importantly, the therapeutic benefits provided by our heterologous L. monocytogenes-MRB prime-boost strategy are superior to those conferred by the Ad-MRB combination. Our study provides proof of concept for the heterologous oncolytic bacteria-virus prime-boost approach for anticancer vaccination and merits its consideration for clinical testing.


Assuntos
Bactérias , Vacinas Anticâncer/imunologia , Imunização Secundária , Neoplasias/imunologia , Neoplasias/terapia , Vírus Oncolíticos , Adenoviridae/imunologia , Animais , Bactérias/genética , Bactérias/imunologia , Biomarcadores , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunização , Imuno-Histoquímica , Listeria monocytogenes/imunologia , Melanoma Experimental , Camundongos , Neoplasias/patologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Resultado do Tratamento , Carga Tumoral , Vacinação , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Chem Biol ; 11(12): 988-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479438

RESUMO

Immune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation. We identified miR-130b and miR-185 as hepatic microRNAs (miRNAs) whose expression is stimulated by 25-hydroxycholesterol (25-HC), an antiviral oxysterol secreted by interferon-stimulated macrophages and dendritic cells, during hepatitis C virus (HCV) infection. However, 25-HC only directly stimulated miR-185 expression, whereas HCV regulated miR-130b expression. Independently, miR-130b and miR-185 inhibited HCV infection. In particular, miR-185 significantly restricted host metabolic pathways crucial to the HCV life cycle. Interestingly, HCV infection decreased miR-185 and miR-130b levels to promote lipid accumulation and counteract 25-HC's antiviral effect. Furthermore, miR-185 can inhibit other viruses through the regulation of immunometabolic pathways. These data establish these microRNAs as a key link between innate defenses and metabolism in the liver.


Assuntos
Hepatite C/imunologia , Hepatite C/metabolismo , Fígado/imunologia , Fígado/metabolismo , MicroRNAs/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Hidroxicolesteróis/farmacologia , Fígado/efeitos dos fármacos , Fígado/virologia , MicroRNAs/genética , Conformação Molecular
15.
Mol Ther ; 22(6): 1188-1197, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24569832

RESUMO

Oncolytic viruses (OVs) and bacteria share the property of tumor-selective replication following systemic administration. In the case of nonpathogenic bacteria, tumor selectivity relates to their ability to grow extracellularly within tumor stroma and is therefore ideally suited to restricting the production of bacterially produced therapeutic agents to tumors. We have previously shown the ability of the type 1 interferon antagonist B18R to enhance the replication and spread of vesicular stomatitis virus (VSV) by overcoming related cellular innate immunity. In this study, we utilized nonpathogenic bacteria (E. coli) expressing B18R to facilitate tumor-specific production of B18R, resulting in a microenvironment depleted of bioactive antiviral cytokine, thus "preconditioning" the tumor to enhance subsequent tumor destruction by the OV. Both in vitro and in vivo infection by VSVΔ51 was greatly enhanced by B18R produced from E. coli. Moreover, a significant increase in therapeutic efficacy resulted from intravenous (i.v.) injection of bacteria to tumor-bearing mice 5 days prior to i.v. VSVΔ51 administration, as evidenced by a significant reduction in tumor growth and increased survival in mice. Our strategy is the first example where two such diverse microorganisms are rationally combined and demonstrates the feasibility of combining complementary microorganisms to improve therapeutic outcome.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Escherichia coli/genética , Vírus Oncolíticos/genética , Vesiculovirus/genética , Proteínas Virais/metabolismo , Animais , Carcinoma Pulmonar de Lewis/microbiologia , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/virologia , Linhagem Celular Tumoral , Escherichia coli/metabolismo , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Células HT29 , Humanos , Injeções Intravenosas , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Vesiculovirus/fisiologia , Proteínas Virais/genética , Replicação Viral
16.
Oncolytic Virother ; 2: 47-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27512657

RESUMO

The optimal route for clinical delivery of oncolytic viruses is thought to be systemic intravenous injection; however, the immune system is armed with several highly efficient mechanisms to remove pathogens from the circulatory system. To overcome the challenges faced in trying to delivery oncolytic viruses specifically to tumors via the bloodstream, carrier cells have been investigated to determine their suitability as delivery vehicles for systemic administration of oncolytic viruses. Cell carriers protect viruses from neutralization, one of the most limiting aspects of oncolytic virus interaction with the immune system. Cell carriers can also possess inherent tumor tropism, thus directing the delivery of the virus more specifically to a tumor. With preclinical studies already demonstrating the success and feasibility of this approach with multiple oncolytic viruses, clinical evaluation of cell-mediated delivery of viruses is on the horizon. Meanwhile, ongoing preclinical studies are aimed at identifying new cellular vehicles for oncolytic viruses and improving current promising cell carrier platforms.

17.
Mol Ther ; 19(5): 886-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21364541

RESUMO

Oncolytic viruses (OVs) have been engineered or selected for cancer cell-specific infection however, we have found that following intravenous administration of vesicular stomatitis virus (VSV), tumor cell killing rapidly extends far beyond the initial sites of infection. We show here for the first time that VSV directly infects and destroys tumor vasculature in vivo but leaves normal vasculature intact. Three-dimensional (3D) reconstruction of infected tumors revealed that the majority of the tumor mass lacks significant blood flow in contrast to uninfected tumors, which exhibit relatively uniform perfusion. VSV replication in tumor neovasculature and spread within the tumor mass, initiates an inflammatory reaction including a neutrophil-dependent initiation of microclots within tumor blood vessels. Within 6 hours of intravenous administration of VSV and continuing for at least 24 hours, we observed the initiation of blood clots within the tumor vasculature whereas normal vasculature remained clot free. Blocking blood clot formation with thrombin inhibitors prevented tumor vascular collapse. Our results demonstrate that the therapeutic activity of an OV can go far beyond simple infection and lysis of malignant cells.


Assuntos
Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus da Estomatite Vesicular Indiana , Adenocarcinoma/genética , Animais , Coagulação Sanguínea , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Trombina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...