Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(29): 12119-12127, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38979715

RESUMO

We designed a tris-catecholate-based siderophore mimic, H6-T-CATL, to selectively chelate iron(III) from mitochondrial cytochromes and other iron-containing proteins within cellular matrices. This strategic sequestration aims to trigger apoptosis or ferroptosis in cancer cells through the glutathione (GSH)-dependent release of reduced iron and subsequent ROS-mediated cytotoxicity. Synthesis of H6-T-CATL involved precise peptide coupling reactions. Using the Fe(III)-porphyrin model (Fe-TPP-Cl), akin to cytochrome c, we studied H6-T-CATL's ability to extract iron(III), yielding a binding constant (Krel) of 1014 for the resulting iron(III) complex (FeIII-T-CATL)3-. This complex readily underwent GSH-mediated reduction to release bioavailable iron(II), which catalyzed Fenton-like reactions generating hydroxyl radicals (˙OH), confirmed by spectroscopic analyses. Our research underscores the potential of H6-T-CATL to induce cancer cell death by depleting iron(III) from cellular metalloproteins, releasing pro-apoptotic iron(II). Evaluation across various cancer types, including normal cells, demonstrated H6-T-CATL's cytotoxicity through ROS production, mitochondrial dysfunction, and activation of ferroptosis and DNA damage pathways. These findings propose a novel mechanism for cancer therapy, leveraging endogenous iron stores within cells. H6-T-CATL emerges as a promising next-generation anticancer agent, exploiting iron metabolism vulnerabilities to induce selective cancer cell death through ferroptosis induction.


Assuntos
Antineoplásicos , Ferroptose , Espécies Reativas de Oxigênio , Sideróforos , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sideróforos/química , Sideróforos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Desenho de Fármacos , Ferro/química , Ferro/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39024644

RESUMO

OBJECTIVES: Breast cancer is among the most heterogeneous and aggressive diseases and a foremost cause of death in women globally. Hypoxic activation of HIF-1α in breast cancers triggers the transcription of a battery of genes encoding proteins that facilitate tumor growth and metastasis and is correlated with a poor prognosis. Based on the reported cytotoxic and anti-cancer properties of Moringa oleifera (Mo), this study explores the inhibitory effect of bioactive compounds from M. oleifera and breast cancer target proteins HIF-1α, VEGF, and GLUT-1 in silico. METHODS: The X-ray crystallographic structures of HIF-1α, VEGF, and GLUT1 were sourced from the Protein Data Bank (PDB) and docked with 70 3D PubChem structures of bioactive compounds of M. oleifera using AutoDock Vina, and binding modes were analyzed using Discovery Studio. Five compounds with the highest binding energies were selected and further drug-likeness, oral bioavailability, ADME, and toxicity profiles were analyzed using SwissADME, ADMETSaR, and ADMETlab 3.0 web server. RESULTS: Out of the screened 70 bioactive compounds, the top five compounds with the best binding energies were identified namely Apigenin, Ellagic Acid, Isorhamnetin, Luteolin, and Myricetin with each receptor. Molecular docking results indicated that the ligands interact strongly with the target HIF-1α, VEGF, and GLUT-1 receptors through hydrogen bonds and hydrophobic interactions. These compounds showed favorable drug-like and pharmacokinetic properties, possessed no substantial toxicity, and were fairly bioavailable. CONCLUSIONS: Results suggested that the compounds possess strong potential in developing putative lead compounds targeting HIF-1α that are safe natural plant-based drugs against breast cancer.

3.
Chem Asian J ; : e202400616, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923831

RESUMO

The anticancer efficacy of doxorubicin, an anthracycline-based and FDA-approved chemotherapeutic drug, is significantly hindered by acquired chemoresistance and severe side effects despite its potent anticancer properties. To overcome these challenges, we developed an innovative therapeutic formulation that integrates targeted chemotherapy and phototherapy within a single platform using gold nanoparticles (AuNPs). This novel nanoconjugate, designated as Dox-Fe@FA-AuNPs, is co-functionalized with folic acid, doxorubicin, and an iron(III)-phenolate/carboxylate complex, enabling cancer-specific drug activation. Here, we report the synthesis, characterization, and comprehensive physico-chemical and biological evaluations of Dox-Fe@FA-AuNPs. The nanoconjugate exhibited excellent solubility, stability, and enhanced cellular uptake in folate receptor-positive cancer cells. The nanoconjugate was potently cytotoxic against HeLa and MDA-MB-231 cancer cells (HeLa: 105.5±16.52 µg mL-1; MDA-MB-231: 112.0±12.31 µg mL-1; MDA-MB-231 (3D): 156.31±19.35 µg mL-1) while less cytotoxic to the folate(-) cancer cells (MCF-7, A549 and HepG2). The cytotoxicity was attributed to the pH-dependent release of doxorubicin, which preferentially occurs in the acidic tumor microenvironment. Additionally, under red light irradiation, the nanoconjugate generated ROS, inducing caspase-3/7-dependent apoptosis with a photo-index (PI) >50, and inhibited cancer cell migration. Our findings underscore the potential of Dox-Fe@FA-AuNPs as a highly effective and sustainable platform for targeted chemo-phototherapy.

4.
Eur J Med Chem ; 268: 116217, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367491

RESUMO

Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Óxido Nítrico/química , Doadores de Óxido Nítrico/química , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico
5.
Dalton Trans ; 53(5): 2108-2119, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180438

RESUMO

Photo-redox chemistry resulting from ligand to metal charge transfer in red-light-activable iron(III) complexes could be a potent strategic tool for next-generation photochemotherapeutic applications. Herein, we developed an iron(III) complex and folate co-functionalized gold nanoconjugate (Fe@FA-AuNPs) and thoroughly characterized it with NMR, ESI MS, UV-visible, EPR, EDX, XPS, powder X-ray diffraction, TEM and DLS studies. There was a remarkable shift in the SPR band of AuNPs to 680 nm, and singlet oxygen (1O2) and hydroxyl radicals were potently generated upon red-light activation, which were probed by UV-visible and EPR spectroscopic assays. Cellular uptake studies of the nanoconjugate (Fe@FA-AuNPs) revealed significantly higher uptake in folate(+) cancer cells (HeLa and MDA-MB-231) than folate(-) (A549) cancer cells or normal cells (HPL1D), indicating the targeting potential of the nanoconjugate. Confocal imaging indicated primarily mitochondrial localization. The IC50 values of the nanoconjugate determined from a cell viability assay in HeLa, MDA-MB-231, and A549 cells were 27.83, 39.91, and 69.54 µg mL-1, respectively in red light, while in the dark the values were >200 µg mL-1; the photocytotoxicity was correlated with the cellular uptake of the nanoconjugate. The nanocomposite exhibited similar photocytotoxicity (IC50 in red light, 37.35 ± 8.29 µg mL-1 and IC50 in the dark, >200 µg mL-1). Mechanistic studies revealed that intracellular generation of ROS upon red-light activation led to apoptosis in HeLa cells. Scratch-wound-healing assays indicated the inhibition of the migration of MDA-MB-231 cells treated with the nanoconjugate and upon photo-activation. Overall, the nanoconjugate has emerged as a potent tool for next-generation photo-chemotherapeutics in the clinical arena of targeted cancer therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Células HeLa , Ferro , Nanoconjugados/química , Ouro/farmacologia , Ouro/química , Células MDA-MB-231 , Ácido Fólico/química , Nanopartículas Metálicas/química
6.
J Inorg Biochem ; 243: 112183, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933341

RESUMO

We report the synthesis and characterization of red-light activable gold nanoparticle functionalized with biotinylated copper(II) complex of general molecular formula, [Cu(L3)(L6)]-AuNPs (Biotin-Cu@AuNP), where L3 = N-(3-((E)-3,5-di-tert-butyl-2-hydroxybenzylideneamino)-4-hydroxyphenyl)-5-((3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide, L6 = 5-(1,2-dithiolan-3-yl)-N-(1,10-phenanthrolin-5-yl)pentanamide, which was explored for their photophysical, theoretical and photo-cytotoxic potentials. The nanoconjugate exhibits differential uptake in biotin positive and biotin negative cancer cells as well as normal cells. The nanoconjugate also shows remarkable photodynamic activity against biotin positive A549 (IC50: 13 µg/mL in red light; >150 µg/mL in dark) and HaCaT (IC50: 23 µg/mL in red light; >150 µg/mL in dark) cells under red light (600-720 nm, 30 Jcm-2) irradiation, with significantly high photo-indices (PI>15). The nanoconjugate is less toxic to HEK293T (biotin negative) and HPL1D (normal) cells. Confocal microscopy confirms preferential mitochondrial and partly cytoplasmic localization of Biotin-Cu@AuNP in A549 cells. Several photo-physical and theoretical studies reveal the red light-assisted generation of singlet oxygen (1O2) (Ф (1O2) =0.68) as a reactive oxygen species (ROS) which results in remarkable oxidative stress and mitochondrial membrane damage, leading to caspase 3/7-dependent apoptosis of A549 cells. Overall, the nanocomposite (Biotin-Cu@AuNP) exhibiting red light-assisted targeted photodynamic activity has emerged as the ideal next generation PDT agents.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Humanos , Biotina , Ouro , Cobre , Células HEK293 , Nanoconjugados , Fármacos Fotossensibilizantes/farmacologia
7.
J Inorg Biochem ; 238: 112055, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335746

RESUMO

Iron is the trace element of natural selection by the biological systems due to its versatile coordination chemistry, and is recently explored for medicinal and diagnostic applications. Photo-activated states of iron complexes exhibiting substitution, dissociation, isomerization reactions, intramolecular redox reactions or energy transfer to other molecules have attracted the attention across the globe for the potent applications in photo-chemotherapy. There is a significant advancement on the development of iron-based complexes for photochemotherapeutic applications. Here in we reviewed the photo-activated states and photochemistry of iron complexes, and recent advances made in the area of photochemotherapy of iron complexes relevant to the photochemistry of iron complexes.


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Ferro/química , Fotoquímica , Oxirredução , Complexos de Coordenação/química
8.
J Heterocycl Chem ; 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35942205

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the ongoing pandemic named COVID-19 which causes a serious emergency on public health hazards of international concern. In the face of a critical medical emergency, repositioning of drugs is one of the most authentic options to design an adequate treatment for infected patients immediately. In this strategy, Remdesivir (Veklury), Hydroxychloroquine appears to be the drug of choice and garnered unprecedented attention as potential therapeutic agents against the pandemic realized worldwide due to SARS-CoV-2 infection. These are the breathtaking instances of possible repositioning of drugs, whose pharmacokinetics and optimal dosage are familiar. In this review, we provide an overview of these medications, their synthesis, and the possible mechanism of action against SARS-CoV-2.

9.
ChemistrySelect ; 6(29): 7429-7435, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34541296

RESUMO

The earth has witnessed the greatest global health crisis due to the outbreak of the SARS-CoV-2 virus in late 2019, resulting in the pandemic COVID-19 with 3.38 million mortality and 163 million infections across 222 nations. Therefore, there is an urgent need for an effective therapeutic option against the SARS-CoV-2 virus. Transition metal complexes with unique chemical, kinetic and thermodynamic properties have recently emerged as the viable alternative for medicinal applications. Herein, the potential application of selected antiviral transition metal-based compounds against the SARS-CoV-2 virus was explored in silico. Initially, the transition metal-based antiviral compounds (1-5) were identified based on the structural similarity of the viral proteins (proteases, reverse transcriptase, envelop glycoproteins, etc.) of HIV, HCV, or Influenza virus with the proteins (S-protein, RNA-dependent RNA polymerase, proteases, etc) of SARS-CoV-2 virus. Hence the complexes (1-5) were subjected to ADME analysis for toxicology and pharmacokinetics report and further for the molecular docking calculations, selectively with the viral proteins of the SARS-CoV-2 virus. The molecular docking studies revealed that the iron-porphyrin complex (1) and antimalarial drug, ferroquine (2) could be the potential inhibitors of Main protease (Mpro) and spike proteins respectively of SARS-CoV-2 virus. The complex 1 exhibited high binding energy of -11.74 kcal/mol with the Mpro of SARS-CoV-2. Similarly ferroquine exhibitred binding energy of -7.43 kcal/mol against spike protein of SARS-CoV-2. The complex 5 also exhibited good binding constants values of -7.67, -8.68 and -7.82 kcal/mol with the spike protein, Mpro and RNA dependent RNA polymerase (RdRp) proteins respectively. Overall, transition metal complexes could provide an alternative and viable therapeutic solution for COVID-19.

10.
Org Biomol Chem ; 19(23): 5072-5076, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34028485

RESUMO

We developed a novel Pd-catalysed enantioselective synthesis of C-N bonds using the chiral scaffold of DNA. The non-covalently linked [Pd(phen)(OAc)2] with st-DNA catalysed the Markonicov hydroamination of ß-nitrostyrene with methoxyamine for the first time with >75% enantiomeric excess (ee) in an aqueous buffer (pH 7.4) at room temperature.

11.
Inorg Chem ; 60(9): 6283-6297, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33887143

RESUMO

Iron(III)-phenolate/carboxylate complexes exhibiting photoredox chemistry and photoactivated reactive oxygen species (ROS) generation at their ligand-to-metal charge-transfer (LMCT) bands have emerged as potential strategic tools for photoactivated chemotherapy. Herein, the synthesis, in-depth characterization, photochemical assays, and remarkable red light-induced photocytotoxicities in adenocarcinomic human immortalized human keratinocytes (HaCaT) and alveolar basal epithelial (A549) cells of iron(III)-phenolate/carboxylate complex of molecular formula, [Fe(L1)(L2)] (1), where L1 is bis(3,5 di-tert-butyl-2-hydroxybenzyl)glycine and L2 is 5-(1,2-dithiolan-3-yl)-N-(1,10-phenanthroline-5-yl)pentanamide, and the gold nanocomposite functionalized with complex 1 (1-AuNPs) are reported. There was a significant red shift in the UV-visible absorption band on functionalization of complex 1 to the gold nanoparticles (λmax: 573 nm, 1; λmax: 660 nm, 1-AuNPs), rendering the nanocomposite an ideal candidate for photochemotherapeutic applications. The notable findings in our present studies are (i) the remarkable cytotoxicity of the nanocomposite (1-AuNPs) to A549 (IC50: 0.006 µM) and HaCaT (IC50: 0.0075 µM) cells in red light (600-720 nm, 30 J/cm2) while almost nontoxic (IC50 > 500 µg/mL, 0.053 µM) in the dark, (ii) the nontoxicity of 1-AuNPs to normal human diploid fibroblasts (WI-38) or human peripheral lung epithelial (HPL1D) cells (IC50 > 500 µg/mL, 0.053 µM) both in the dark and red light signifying the target-specific anticancer activity of the nanocomposite, (iii) localization of 1-AuNPs in mitochondria and partly nucleus, (iv) remarkable red light-induced generation of reactive oxygen species (ROS: 1O2, •OH) in vitro, (v) disruption of the mitochondrial membrane due to enhanced oxidative stress, and (vi) caspase 3/7-dependent apoptosis. A similar cytotoxic profile of complex 1 was another key finding of our studies. Overall, our current investigations show a new red light-absorbing iron(III)-phenolate/carboxylate complex-functionalized gold nanocomposite (1-AuNPs) as the emerging next-generation iron-based photochemotherapeutic agent for targeted cancer treatment modality.


Assuntos
Antineoplásicos/farmacologia , Compostos Férricos/farmacologia , Ouro/química , Luz , Nanocompostos/química , Fotoquimioterapia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/síntese química , Compostos Férricos/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
12.
Anticancer Agents Med Chem ; 21(1): 33-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32720606

RESUMO

BACKGROUND AND OBJECTIVE: Photoactive transition metal complexes like copper complexes find great interest in promoting metal-based photochemotherapeutic agents. In the present study, we explored the photocytotoxic efficacy of new selenylnaphthoquinone-based copper (II) complexes that provide a phenomenal platform in making an effective photo-chemotherapeutic agent via PDT in the clinical field of cancer therapy. METHODS: Three new copper(II) complexes (1-3) were synthesized in 40-60% yield and characterized analytically/ spectroscopically. ATCC® Normal Adult Human Primary Epidermal Keratinocytes were grown in Dermal Cell Basal Media supplemented with Keratinocyte Growth Kit components, to propagate keratinocytes in serum- free (not animal free) conditions. Anticancer activity of the complexes was studied using MTT (3- [4,5- dimethyltiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. The intracellular ROS (1O2) generation was studied by using Flow Cytometric Analysis (FACS) on HaCaT cells using cell accessible non-polar 2',7'- Dichlorofluorescein Diacetate (DCFH-DA) dye. The Acridine Orange/Ethidium Bromide (AO/EB) dual staining assay was performed for detecting apoptosis in HaCaT cells. Several photophysical studies probing the generation of singlet oxygen was also carried out. We have performed Time-Dependent Density Functional Theory (TD-DFT) calculations using unrestricted B3LYP to understand the mechanism of type-II process. RESULTS: All the complexes were remarkably cytotoxic in HaCaT cells with IC50, 1-4µM under visible light with comparing lower dark toxicity. The presence of low-lying and long-lived triplet excited state allowed effective intersystem crossing and subsequent generation of singlet oxygen, which was the primary cytotoxic species responsible for oxidative stress and apoptosis. The experimental findings are in good agrrement with the computational analysis (TD-DFT). CONCLUSION: The remarkably enhanced cytotoxicity of the new selenyl copper (II) complexes under the visible light probed the role of Se in photosensitized generation of singlet oxygen which was responsible for apoptosis in HaCaT cells. The results in the present work are of paramount importance in developing next generation copper(II)-based PDT agents.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Cobre/química , Naftoquinonas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Compostos de Selênio/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Teoria da Densidade Funcional , Células HaCaT , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo
13.
Dalton Trans ; 49(31): 10786-10798, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779686

RESUMO

Herein we report the synthesis, characterization, photophysical and photocytotoxicity studies of a new class of curcumin-based lanthanide(iii) complexes of general molecular formula [La(1,10-phen)2(L)(NO3)2] (1-4), where L = 1-phenylbutane-1,3-dione (L1, 1), 1-(anthracen-9-yl)butane-1,3-dione (L2, 2), 1-(3a1,5a1-dihydropyren-1-yl)butane-1,3-dione (L3, 3) and curcumin (L4, 4). Complex 1 was characterized by single-crystal X-ray crystallography and it exhibited the N4O6 coordination of La(iii). The presence of the low-lying and long-lived triplet excited state enabled the luminescent complexes (2-4) to generate singlet oxygen (1O2) in high yield when the complex was activated with visible light (400-700 nm, 10 J cm-2), which could be responsible for the photo-ablation of cancer cells. Complexes (2-4) exhibited remarkable photocytotoxicity in HeLa and MCF-7 cells with photocytotoxicity index 4-50 in the presence of visible light (400-700 nm, 10 J cm-2), while they were non-toxic in the dark with an IC50 value of >100 µM. The significantly lower toxicity (IC50 > 100 µM in the dark; IC50 in visible light ∼60 µM) of the complexes in MCF-10A (normal cells) in the dark and in visible light suggested their potential for targeting anticancer activity. Further studies showed that complex 4 induced caspase-dependent apoptosis through mitochondrial damage, mitochondrial respiration inhibition and reactive oxygen species (ROS) elevation. The cytosolic localization of complex 4 in HeLa cells, having a curcumin moiety as a fluorophore, was proved from the confocal microscopic studies. The photocytotoxicity of the complexes (1-4) was directly correlated to the efficacy of the complexes to generate singlet oxygen, which resulted in the photocytotoxicity order of 4 > 3>2 ≫ 1. Photo-physical studies revealed that the chelation of curcumin by La(iii) facilitated intersystem crossing in curcumin by reducing the energy gap of the singlet to triplet excited state. Therefore, the presence of low-lying and long-lived triplet excited state was responsible for increasing the generation of singlet oxygen and, thereby, photo-cytotoxicity in HeLa and MCF-7 cells. The present study has given an overall (Chemistry to Biology) perspective on the effect of La(iii) on the photo-cytotoxicity of selected photo-active curcumin-based ß-diketonate ligands.


Assuntos
Antineoplásicos , Curcumina , Cetonas , Elementos da Série dos Lantanídeos , Fármacos Fotossensibilizantes , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Curcumina/química , Curcumina/farmacologia , Curcumina/efeitos da radiação , Endocitose , Células HeLa , Humanos , Cetonas/química , Cetonas/farmacologia , Cetonas/efeitos da radiação , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/farmacologia , Elementos da Série dos Lantanídeos/efeitos da radiação , Luz , Células MCF-7 , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Soroalbumina Bovina/metabolismo , Oxigênio Singlete/química
14.
Dalton Trans ; 48(42): 16126, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31603176

RESUMO

Correction for 'Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative' by Mithun Roy et al., Dalton Trans., 2011, 40, 4855-4864.

17.
J Org Chem ; 82(3): 1420-1427, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28099007

RESUMO

The synthesis of previously unknown derivatives of boranephosphonate that contain amine substitutions at boron and the incorporation of these derivatives into the backbone of DNA oligonucleotides is described. These derivatives result from iodine-mediated replacement of one BH3 hydride of a boranephosphonate linkage by pyridine, various substituted pyridines, other aromatic amines, and certain unsaturated amines. Oligonucleotides containing these backbone modifications show enhanced uptake, relative to unmodified DNA, in mammalian cells. The redox behavior of the boranephosphonate and pyridinium boranephosphonate conjugated linkages has also been studied.


Assuntos
Boranos/química , DNA de Neoplasias/química , Oligonucleotídeos/química , Fosfatos/química , Compostos de Piridínio/química , Boranos/síntese química , Boranos/farmacocinética , Células HeLa , Humanos , Fosfatos/síntese química , Fosfatos/farmacocinética , Compostos de Piridínio/síntese química , Compostos de Piridínio/farmacocinética
18.
Eur J Med Chem ; 125: 816-824, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27750199

RESUMO

Cancer-specific anticancer drugs are still an elusive goal. Using light as the temporal control to generate cytotoxic species from photo-activated prodrug in the presence or absence of molecular oxygen has shown potential application targeted chemotherapy as in photodynamic therapy (PDT). In the present work we explored the chemistry of several photo-active (µ-oxo)diiron(III) complexes of the following formulation [{Fe(µ-O) (L-his)(B)}2](ClO4)2 (1a-1c), [Fe2(µ-O)(H2O)2B4](ClO4)4 (2b, 2c) and [Fe2(µ-O)(µ-O2CMe)B4](ClO4)3 (3b, 3c), L-his = l-histidine, B is 2,2'-bipyridine, 1,10-phenanthroline (phen) and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) complexes for tumor-specific anticancer activity. Facile redox chemistry and photochemical aspects of the complexes prompted us to investigate the cytotoxic as well as the photo-activated cytotoxic properties of the complexes to the cancer cells. In the present investigation we explored the cancer-specific condition of excess concentration of H2O2 for our approach to targeted chemotherapy. Cytotoxic effect of the complexes to the cancer cells was found to be significantly higher than in normal cells indicating tumor-specific anticancer activity of the complexes. Cytotoxic effect was even more pronounced when the cancer cells treated with the complexes were exposed to the visible light (400-700 nm). There was >12 fold increase in cytotoxicity of the photoactivated complexes in cancer cells (MCF-7) in comparison to the normal cells (MCF-10a). We have defined a factor viz. cancer cell specificity factor (f) describing the targeted photochemotherapeutic effect of the complexes at their specific concentration. The factor (f) > 1 indicated the cancer cell specificity of the complexes, while f > 2.5 for the complexes under the visible light exposure suggested photodynamic effect. DCFDA assay indicated the presence of excess of ROS in the treated HeLa cells. ROS concentration was found to increase even more on visible light exposure. Increased ROS in the cancer cells disturb the cellular redox mechanism inducing oxidative stress to lethality. Decarboxylation of photo-activated diiron(III) complexes generate OH radical responsible for cell death. Overall, the high efficacy and selectivity of the (µ-oxo)diiron(III) complexes potentially make them suitable for in vivo applications and extensive testing toward transfer into the clinical arena.


Assuntos
Antineoplásicos/química , Fotoquimioterapia/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Feminino , Humanos , Peróxido de Hidrogênio , Compostos de Ferro/efeitos da radiação , Luz , Oxirredução/efeitos dos fármacos , Pró-Fármacos/química , Pró-Fármacos/efeitos da radiação , Sensibilidade e Especificidade
19.
Inorg Chem ; 50(17): 8452-64, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21797197

RESUMO

Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)](ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at ~0.5 V vs SCE in DMF-0.1 M [Bu(n)(4)N](ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at ~450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 µM, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.


Assuntos
Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Bovinos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cristalografia por Raios X , Clivagem do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Células HeLa , Humanos , Metalocenos , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Fenantrolinas/química , Bases de Schiff/química , Estereoisomerismo , Relação Estrutura-Atividade , Triptofano/química
20.
Dalton Trans ; 40(18): 4855-64, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21431236

RESUMO

A new water soluble cationic imidazopyridine species, viz. (1E)-1-((pyridin-2-yl)methyleneamino)-3-(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2(3H)-yl)propan-2-ol (1), as a metal chelator is prepared as its PF(6) salt and characterized. Compound 1 shows fluorescence at 438 nm on excitation at 342 nm in Tris-HCl buffer giving a fluorescence quantum yield (φ) of 0.105 and a life-time of 5.4 ns. Compound 1, as an avid DNA minor groove binder, shows pUC19 DNA cleavage activity in UV-A light of 365 nm forming singlet oxygen species in a type-II pathway. The photonuclease potential of 1 gets enhanced in the presence of Fe(2+), Cu(2+) or Zn(2+). Compound 1 itself displays anticancer activity in HeLa, HepG2 and Jurkat cells with an enhancement on addition of the metal ions. Photodynamic effect of 1 at 365 nm also gets enhanced in the presence of Fe(2+) and Zn(2+). Fluorescence-based cell cycle analysis shows a significant dead cell population in the sub-G1 phase of the cell cycle suggesting apoptosis via ROS generation. A significant change in the nuclear morphology is observed from Hoechst 33258 and an acridine orange/ethidium bromide (AO/EB) dual nuclear staining suggesting apoptosis in cells when treated with 1 alone or in the presence of the metal ions. Apoptosis is found to be caspase-dependent. Fluorescence imaging to monitor the distribution of 1 in cells shows that 1 in the presence of metal ions accumulates predominantly in the cytoplasm. Enhanced uptake of 1 into the cells within 12 h is observed in the presence of Fe(2+) and Zn(2+).


Assuntos
Antineoplásicos/química , Quelantes/química , Imidazóis/química , Ferro/química , Piridinas/química , Zinco/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose , Cátions/química , Linhagem Celular Tumoral , Quelantes/uso terapêutico , Quelantes/toxicidade , Clivagem do DNA , Corantes Fluorescentes/química , Fase G1 , Humanos , Imidazóis/uso terapêutico , Imidazóis/toxicidade , Microscopia de Fluorescência , Neoplasias/tratamento farmacológico , Piridinas/uso terapêutico , Piridinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA