Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Digit Imaging ; 35(3): 496-513, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35141807

RESUMO

Diabetic retinopathy(DR) is a health condition that affects the retinal blood vessels(BV) and arises in over half of people living with diabetes. Exudates(EX) are significant indications of DR. Early detection and treatment can prevent vision loss in many cases. EX detection is a challenging problem for ophthalmologists due to its different sizes and elevations as retinal fundus images frequently have irregular illumination and are poorly contrasting. Manual detection of EX is a time-consuming process to diagnose a mass number of diabetic patients. In the domain of signal processing, both SIFT (scale-invariant feature transform) and SURF (speed-up robust feature) methods are predominant in scale-invariant location retrieval and have shown a range of advantages. But, when extended to medical images with corresponding weak contrast between reference features and neighboring areas, these methods cannot differentiate significant features. Considering these, in this paper, a novel method is proposed based on modified KAZE features, which is an emerging technique to extract feature points and extreme learning machine autoencoders(ELMAE) for robust and fast localization of the EX in fundus images. The main stages of the proposed method are pre-processing, OD localization, dimensionality reduction using ELMAE, and EX localization. The proposed method is evaluated based on the freely accessible retinal database DIARETDB0, DIARETDB1, e-Ophtha, MESSIDOR, and local retinal database collected from Silchar Medical College and Hospital(SMCH). The sensitivity, specificity, and accuracy obtained by the proposed method are 96.5%, 96.4%, and 97%, respectively, with the processing time of 3.19 seconds per image. The results of this study are satisfactory with state-of-the-art methods. The results indicate that the approach taken can detect EX with less processing time and accurately from the fundus images.


Assuntos
Algoritmos , Retinopatia Diabética , Retinopatia Diabética/diagnóstico por imagem , Exsudatos e Transudatos/diagnóstico por imagem , Fundo de Olho , Humanos , Retina
2.
Phys Eng Sci Med ; 44(4): 1351-1366, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748191

RESUMO

Diabetic retinopathy is a microvascular complication of diabetes mellitus that develops over time. Diabetic retinopathy is one of the retinal disorders. Early detection of diabetic retinopathy reduces the chances of permanent vision loss. However, the identification and regular diagnosis of diabetic retinopathy is a time-consuming task and requires expert ophthalmologists and radiologists. In addition, an automatic diabetic retinopathy detection technique is necessary for real-time applications to facilitate and minimize potential human errors. Therefore, we propose an ensemble deep neural network and a novel four-step feature selection technique in this paper. In the first step, the preprocessed entropy images improve the quality of the retinal features. Second, the features are extracted using a deep ensemble model include InceptionV3, ResNet101, and Vgg19 from the retinal fundus images. Then, these features are combined to create an ample feature space. To reduce the feature space, we propose four-step feature selection techniques: minimum redundancy, maximum relevance, Chi-Square, ReliefF, and F test for selecting efficient features. Further, appropriate features are chosen from the majority voting techniques to reduce the computational complexity. Finally, the standard machine learning classifier, support vector machines, is used in diabetic retinopathy classification. The proposed method is tested on Kaggle, MESSIDOR-2, and IDRiD databases, available publicly. The proposed algorithm provided an accuracy of 97.78%, a sensitivity of 97.6%, and a specificity of 99.3%, using top 300 features, which are better than other state-of-the-art methods.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Retinopatia Diabética/diagnóstico , Fundo de Olho , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...