Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 216: 118301, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364353

RESUMO

Recent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30 °C to be achievable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors for > 300 days at 30 °C and 35 °C, respectively, and followed the dynamics of the communities of polyphosphate accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescence in situ hybridization analyses. Stable and nearly complete phosphorus (P) removal was achieved at 30 °C; similarly, long term P removal was stable at 35 °C with effluent PO43-_P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Candidatus Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. A slow-feeding strategy effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. Comparative cycle studies revealed higher carbon and P cycling activity of Ca. Accumulibacter when the temperature was increased from 30 °C to 35 °C, implying that the lowered P removal performance at 35 °C was not a direct effect of temperature, but a result of higher metabolic rates of carbon (and/or P) utilization of PAOs and GAOs, the resultant carbon deficiency, and escalated community competition. An increase in the TOC-to-PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited PAOs. In general, a slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at 35 °C, representing basic conditions suitable for full-scale treatment plants experiencing higher water temperatures.


Assuntos
Betaproteobacteria , Fósforo , Betaproteobacteria/metabolismo , Reatores Biológicos , Carbono , Estudos de Viabilidade , Aquecimento Global , Glicogênio/metabolismo , Hibridização in Situ Fluorescente , Fósforo/metabolismo , Polifosfatos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
2.
NPJ Biofilms Microbiomes ; 7(1): 23, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727564

RESUMO

New long read sequencing technologies offer huge potential for effective recovery of complete, closed genomes from complex microbial communities. Using long read data (ONT MinION) obtained from an ensemble of activated sludge enrichment bioreactors we recover 22 closed or complete genomes of community members, including several species known to play key functional roles in wastewater bioprocesses, specifically microbes known to exhibit the polyphosphate- and glycogen-accumulating organism phenotypes (namely Candidatus Accumulibacter and Dechloromonas, and Micropruina, Defluviicoccus and Candidatus Contendobacter, respectively), and filamentous bacteria (Thiothrix) associated with the formation and stability of activated sludge flocs. Additionally we demonstrate the recovery of close to 100 circularised plasmids, phages and small microbial genomes from these microbial communities using long read assembled sequence. We describe methods for validating long read assembled genomes using their counterpart short read metagenome-assembled genomes, and assess the influence of different correction procedures on genome quality and predicted gene quality. Our findings establish the feasibility of performing long read metagenome-assembled genome recovery for both chromosomal and non-chromosomal replicons, and demonstrate the value of parallel sampling of moderately complex enrichment communities to obtaining high quality reference genomes of key functional species relevant for wastewater bioprocesses.


Assuntos
Bactérias/classificação , Reatores Biológicos/microbiologia , Biologia Computacional/métodos , Esgotos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Genoma Bacteriano , Glicogênio/metabolismo , Metagenoma , Plasmídeos/genética , Polifosfatos/metabolismo
3.
Curr Opin Biotechnol ; 67: 166-174, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33582603

RESUMO

Enhanced biological phosphorus removal (EBPR) is an efficient, cost-effective, and sustainable method for removing excess phosphorus from wastewater. Polyphosphate accumulating organisms (PAOs) exhibit a unique physiology alternating between anaerobic conditions for uptake of carbon substrates and aerobic or anoxic conditions for phosphorus uptake. The implementation of high-throughput sequencing technologies and advanced molecular tools along with biochemical characterization has provided many new perspectives on the EBPR process. These approaches have helped identify a wide range of carbon substrates and electron acceptors utilized by PAOs that in turn influence interactions with microbial community members and determine overall phosphorus removal efficiency. In this review, we systematically discuss the microbial diversity and metabolic response to a range of environmental conditions and process control strategies in EBPR.


Assuntos
Microbiota , Fósforo , Reatores Biológicos , Carbono , Polifosfatos , Águas Residuárias
4.
Water Res ; 189: 116557, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220610

RESUMO

Denitrifying phosphorus removal is a cost and energy efficient treatment technology that relies on polyphosphate accumulating organisms (DPAOs) utilizing nitrate or nitrite as terminal electron acceptor. Denitrification is a multistep process, but many organisms do not possess the complete pathway, leading to the accumulation of intermediates such as nitrous oxide (N2O), a potent greenhouse gas and ozone depleting substance. Candidatus Accumulibacter organisms are prevalent in denitrifying phosphorus removal processes and, according to genomic analyses, appear to vary in their denitrification abilities based on their lineage. Denitrification kinetics and nitrous oxide accumulation in the absence of inhibition from free nitrous acid is a strong indicator of denitrification capabilities of Accumulibacter exposed long-term to nitrate or nitrite as electron acceptor. Thus, we investigated the preferential use of the nitrogen oxides involved in denitrification and nitrous oxide accumulation in two enrichments of Accumulibacter and a competitor - the glycogen accumulating organism Candidatus Competibacter. We modified a metabolic model to predict phosphorus removal and denitrification rates when nitrate, nitrite or N2O were added as electron acceptors in different combinations. Unlike previous studies, no N2O accumulation was observed for Accumulibacter in the presence of multiple electron acceptors. Electron competition did not limit denitrification kinetics or lead to N2O accumulation in Accumulibacter or Competibacter. Despite the presence of sufficient internal storage polymers (polyhydroxyalkanoates, or PHA) as energy source for each denitrification step, the extent of denitrification observed was dependent on the dominant organism in the enrichment. Accumulibacter showed complete denitrification, whereas Competibacter denitrification was limited to reduction of nitrate to nitrite. These findings indicate that DPAOs can contribute to lowering N2O emissions in the presence of multiple electron acceptors under partial nitritation conditions.


Assuntos
Desnitrificação , Óxido Nitroso , Reatores Biológicos , Elétrons , Cinética , Nitritos , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...