Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(37): e2301153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154199

RESUMO

Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@Cox Sy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@Cox Sy @N, SC) have been developed. The coordination bonding among Cox Sy , and α-/γ-MnS nanoparticles at the interfaces and the π-π stacking interactions developed across α-/γ-MnS@Cox Sy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α-/γ-MnS@Cox Sy @N, SC electrode exhibits an excellent specific capacity of 277 mA hg-1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3 C2 TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg-1 (1.62 mWh cm-3 ) at a power of 933 W kg-1 and 92% capacitance retention over 5000 cycles.

2.
ACS Nano ; 16(1): 1625-1638, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36350111

RESUMO

Dispersing the minuscule mass loading without hampering the high catalytic activity and long-term stability of a noble metal catalyst results in its ultimate efficacy for the electrochemical hydrogen evolution reaction (HER). Despite being the most efficient HER catalyst, the use of Pt is curtailed due to its scarcity and tendency to leach out in the harsh electrochemical reaction environment. In this study, we combined F-doped tin(IV) oxide (F-SnO2) aerogel with Pt catalyst to prevent metallic corrosion and to achieve abundant Pt active sites (approximately 5 nm clusters) with large specific surface area (321 cm2·g-1). With nanoscopic Pt loading inside the SnO2 aerogel matrix, the as-synthesized hybrid F-SnO2@Pt possesses a large specific surface area and high porosity and, thus, exhibits efficient experimental and intrinsic HER activity (a low overpotential of 42 mV at 10 mA·cm-2 in 0.5 M sulfuric acid), a 22-times larger turnover frequency (11.2 H2·s-1) than that of Pt/C at 50 mV, and excellent robustness over 10,000 cyclic voltammetry cycles. The existing metal support interaction and strong intermolecular forces between Pt and F-SnO2 account for the catalytic superiority and persistence against corrosion of F-SnO2@Pt compared to commercially used Pt/C. Density functional theory analysis suggests that hybridization between the Pt and F-SnO2 orbitals enhances intermediate hydrogen atom (H*) adsorption at their interface, which improves the reaction kinetics.

3.
RSC Adv ; 10(22): 13016-13020, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35492100

RESUMO

In this work, we demonstrate a highly enhanced electrocatalytic activity of vanadium-doped CoP (V-CoP), directly grafted on a vertical graphene/carbon cloth electrode (VG/CC) by a facile electrochemical deposition method. Impressively, V-CoP/VG/CC exhibited a superior catalytic activity toward the hydrogen evolution reaction (HER) in alkaline solution. Compared to CoP/VG/CC, V-doping decreased the overpotential for HER at 10 mA cm-2 by more than half to 40 mV. The new catalyst even outperformed Pt/C beyond 150 mA cm-2. The overpotential for OER at 50 mA cm-2 was merely 314 mV, more than 100 mV lower than that of IrO2. Moreover, our novel catalyst worked as an excellent bifunctional catalyst with a low cell voltage of 1.69 V to achieve a current density of 50 mA cm-2. Detailed characterizations revealed that the V-doping in CoP resulted in improved electrical conductivity and increased active sites. Our findings highlight the significant advantage of V doping on the catalytic activities of CoP, already boosted by VG. Furthermore, concurrent doping with the electrodeposition of catalyst offers a new approach for practical water electrolysis.

4.
ACS Appl Mater Interfaces ; 9(50): 43674-43680, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29179532

RESUMO

Despite tremendous progress in the development of novel electrocatalysts for hydrogen evolution reaction (HER), the accumulation of hydrogen gas bubbles produced on the catalyst surface has been rather poorly addressed. The bubbles block the surface of the electrode, thus resulting in poor performance even when excellent electrocatalysts are used. In this study, we show that vertically grown graphene nanohills (VGNHs) possess an excellent capability to quickly disengage the produced hydrogen gas bubbles from the electrode surface, and thus exhibit superaerophobic properties. To compensate for the poor electrolytic properties of graphene toward HER, the graphene surface was modified with WS2 nanoparticles to accelerate the water-splitting process by using this hybrid catalyst (VGNHs-WS2). For comparison purposes, WS2 nanoparticles were also deposited on the flat graphene (FG) surface. Because of its superior superaerophobic properties, VGNHs-WS2 outperformed FG-WS2 in terms of both catalytic activity toward the HER and superaerophobicity. Furthermore, VGNHs-WS2 exhibited a low onset potential (36 mV compared to 288 mV for FG-WS2) and long-term stability in the HER over an extended period of 20 h. This study provides an efficient way to utilize highly conductive and superaerophobic VGNHs as support materials for intrinsic semiconductors, such as WS2, to simultaneously achieve superaerophobicity and high catalytic activity.

5.
Nanoscale ; 9(2): 844-849, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27991636

RESUMO

Time-reversal symmetry (TRS) breaking of the topological insulators (TIs) is a prerequisite to observe the quantum anomalous Hall effect (QAHE) and topological magnetoelectric effect (TME). Although antiferromagnetism as well as ferromagnetism could break the TRS and generate massive Dirac surface states in the TIs, no attention has been paid to the antiferromagnet-TI heterostructures. Herein, we report the magnetotransport measurements of Bi2Se3 proximately coupled to antiferromagnetic NiO. Thin films of Bi2Se3 were successfully grown on the NiO (001) single crystalline substrates by molecular beam epitaxy. Unexpectedly, we observed a strong suppression of the weak antilocalization effect, which is similar to the case of TIs coupled to the ferromagnetic materials. For the 5 nm-thick Bi2Se3 sample on NiO, we even observed a crossover to weak localization at 2 K. These behaviors are attributed to the strong magnetic exchange field from the Ni 3d electrons. Our results show the effectiveness of the antiferromagnetic materials in breaking the TRS of TIs by the proximity effect and their possible applications for QAHE and TME observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...