Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 663: 115015, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36496002

RESUMO

A DNA-based electrochemical biosensor has been developed herein for the detection of Human papillomavirus-16 (HPV-16). HPV-16 is a double-stranded, non-enveloped, epitheliotropic DNA virus which responsible for cervical cancer. In this proposed biosensor, an indium tin oxide (ITO) coated glass electrode was modified for sensing HPV-16 using graphene oxide and silver coated gold nanoparticles. Subsequently, HPV-16 specific DNA probes were immobilized on a modified ITO surface. The synthesized nanocomposites were characterized by FE-SEM and UV-VIS spectroscopy techniques. Electrochemical characterization was performed by using cyclic voltammetry and electrochemical Impedance Spectroscopy methods. The hybridization between the probe and target DNA was analyzed by a reduction in current, mediated by methylene blue. The biosensor showed a qualitative inequity between the probe and target HPV-16 DNA. The developed biosensor showed high sensitivity as 0.54 mA/aM for the detection of HPV-16. In a linear range of 100 aM to 1 µM with 100 aM LOD, the proposed biosensor exhibited excellent performance with the rapid diagnosis. Thus, the results indicate that the developed HPV DNA biosensor shows good consistency with the present approaches and opens new opportunities for developing point-of-care devices. The diagnosis of HPV-16 infection in its early stage may also be possible with this detection system.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Grafite/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
2.
Diagnostics (Basel) ; 12(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36140489

RESUMO

Human Papilloma Virus 16 (HPV 16) is the well-known causative species responsible for triggering cervical cancer. When left undiagnosed and untreated, this disease leads to life-threatening events among the female populace, especially in developing nations where healthcare resources are already being stretched to their limits. Considering various drawbacks of conventional techniques for diagnosing this highly malignant cancer, it becomes imperative to develop miniaturized biosensing platforms which can aid in early detection of cervical cancer for enhanced patient outcomes. The current study reports on the development of an electrochemical biosensor based on reduced graphene oxide (rGO)/DNA hybrid modified flexible carbon screen-printed electrode (CSPE) for the detection of HPV 16. The carbon-coated SPEs were initially coated with rGO followed by probe DNA (PDNA) immobilization. The nanostructure characterization was performed using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the electrochemical characterization of the nano-biohybrid sensor surface. The optimization studies and analytical performance were assessed using differential pulse voltammetry (DPV), eventually exhibiting a limit of detection (LoD) ~2 pM. The developed sensor was found to be selective solely to HPV 16 target DNA and exhibited a shelf life of 1 month. The performance of the developed flexible sensor further exhibited a promising response in spiked serum samples, which validates its application in future point-of-care scenarios.

3.
Biosensors (Basel) ; 12(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35200347

RESUMO

In this study, we report on a novel aptasensor based on an electrochemical paper-based analytical device (ePAD) that employs a tungsten disulfide (WS2)/aptamer hybrid for the detection of Listeria monocytogenes. Listeria is a well-known causative pathogen for foodborne diseases. The proposed aptasensor signifies many lucrative features which include simple, cost-effective, reliable, and disposable. Furthermore, the use of an aptamer added more advantageous features in the biosensor. The morphological, optical, elemental composition, and phase properties of the synthesized tungsten disulfide (WS2) nanostructures were characterized by field-emission scanning electron microscopy (FESEM), RAMAN spectroscopy, photoluminescence (PL), and X-ray diffraction (XRD), while electrochemical impedance spectroscopy was performed to corroborate the immobilization of aptamer and to assess the L. monocytogenes sensing performance. The limit of detection (LoD) and limit of quantification (LoQ) of the aptasensor was found to be 10 and 4.5 CFU/mL, respectively, within a linear range of 101-108 CFU/mL. The proposed sensor was found to be selective solely towards Listeria monocytogenes in the presence of various bacterial species such as Escherichia coli and Bacillus subtilis. Validation of the aptasensor operation was also evaluated in real samples by spiking them with fixed concentrations (101, 103, and 105) of Listeria monocytogenes, thereby, paving the way for its potential in a point-of-care scenario.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Listeria monocytogenes , Nanoestruturas , Sulfetos/química , Compostos de Tungstênio/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Escherichia coli/química , Limite de Detecção
4.
Environ Sci Pollut Res Int ; 29(57): 86260-86276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34993771

RESUMO

Amoxicillin (AMX) is a widely used antibiotic, which induces harmful effects to nature via bioaccumulation and persistence in the environment if discharged untreated into water bodies. In the current study, a novel bionanocomposite, bismuth oxyiodide-chitosan (BiOI-Ch), was synthesized by a facile precipitation method and its amoxicillin (AMX) adsorption capacity in the presence of ultrasonic waves has been explored. Multiple batch experiments were performed to achieve the optimum operational parameters for maximum adsorption of AMX and the obtained results were as follows: pH 3, 80 mg g-1 AMX concentration, 1.7 g L-1 adsorbent dose, temperature 298 K and ultrasonication time 20 min. Composite removed approximately 90% AMX from the solution under optimized conditions, while the maximal adsorption capacity was determined to be 81.01 mg g-1. BiOI-Ch exhibited superior adsorption capacity as compared to pure BiOI (33.78 mg g-1). To understand the dynamics of reaction, several kinetic and isotherm models were also examined. The adsorption process obeyed pseudo-second-order kinetic model (R2 = 0.98) and was well fitted to Freundlich isotherm (R2 = 0.99). The addition of biowaste chitosan to non-toxic bismuth-based nanoparticles coupled with ultrasonication led to enhanced functional groups as well as surface area of the nanocomposite resulting in superior adsorption capacity, fast adsorption kinetics and improved mass transfer for the removal of AMX molecules. Thus, this study demonstrates the synergistic effect of ultrasonication in improved performance of novel BiOI-Ch for potential application in the elimination of persistent and detrimental pollutants from industrial effluent after necessary optimization for large-scale operation.


Assuntos
Quitosana , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Quitosana/química , Bismuto , Purificação da Água/métodos , Amoxicilina/química , Poluentes Químicos da Água/análise , Nanocompostos/química , Cinética , Termodinâmica , Água , Ondas Ultrassônicas , Concentração de Íons de Hidrogênio
5.
IET Nanobiotechnol ; 15(5): 505-511, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34694759

RESUMO

The occurrence of heavy metal ions in food chain is appearing to be a major problem for mankind. The traces of heavy metals, especially Pb(II) ions present in water bodies remains undetected, untreated, and it remains in the food cycle causing serious health hazards for human and livestock. The consumption of Pb(II) ions may lead to serious medical complications including multiple organ failure which can be fatal. The conventional methods of heavy metal detection are costly, time-consuming and require laboratory space. There is an immediate need to develop a cost-effective and portable sensing system which can easily be used by the common man without any technical knowhow. A portable resistive device with miniaturized electronics is developed with microfluidic well and α-MnO2 /GQD nanocomposites as a sensing material for the sensitive detection of Pb(II). α-MnO2 /GQD nanocomposites which can be easily integrated with the miniaturized electronics for real-time on-field applications. The proposed sensor exhibited a tremendous potential to be integrated with conventional water purification appliances (household and commercial) to give an indication of safety index for the drinking water. The developed portable sensor required low sample volume (200 µL) and was assessed within the Pb(II) concentration range of 0.001 nM to 1 uM. The Limit of Detection (LoD) and sensitivity was calculated to be 0.81 nM and 1.05 kΩ/nM/mm2 , and was validated with the commercial impedance analyser. The shelf-life of the portable sensor was found to be ∼45 days.


Assuntos
Chumbo , Nanocompostos , Humanos , Compostos de Manganês , Óxidos , Água
6.
ACS Omega ; 5(49): 31765-31773, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344830

RESUMO

The persistent use of pesticides in the agriculture field remains a serious issue related to public health. In the present work, molecularly imprinted polymer thin films were developed using electropolymerization of pyrrole (py) onto gold microelectrodes followed by electrodeposition for the selective detection of chlorpyrifos (CPF). The molecularly imprinted polymer (MIP) was synthesized by the electrochemical deposition method, which allowed in-line transfer of MIP on gold microelectrodes without using any additional adhering agents. Various parameters such as pH, monomer ratio, scan rate, and deposition cycle were optimized for sensor fabrication. The sensor was characterized at every stage of fabrication using various spectroscopic, microscopic, and electrochemical techniques. The sensor requires only 2 µL of the analyte and its linear detection range was found to be 1 µM to 1 fM. The developed sensor's limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.93 and 2.82 fM, respectively, with a sensitivity of 3.98 (µA/(µM)/ mm2. The sensor's shelf life was tested for 70 days. The applicability of the sensor in detecting CPF in fruit and vegetable samples was also assessed out with recovery % between 91 and 97% (RSD < 5%). The developed sensor possesses a huge commercial potential for on-field monitoring of pesticides.

7.
Colloids Surf B Biointerfaces ; 195: 111239, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32663711

RESUMO

One of the common complications diagnosed in Diabetes Mellitus (DM) patients is Diabetic Foot Ulcers (DFUs). It is a condition wherein the deep tissues located in the lower limb undergo inflammation and infection due to neurological abnormalities (neuropathy) and various degrees of vascular diseases (angiopathy). The concentration of l-tyrosine (Tyr) rises abruptly in DFUs, and therefore may be used as an indicator for early monitoring of the patient's condition during the onset of diabetic foot disease. Herein, we report the electrochemical enzymatic detection of Tyr using low energy ion beam modified titania nanotube (TiNT) thin films with nitrogen (N+) and gold (Au-) ions. Electrochemical Impedance Spectroscopy (EIS) analysis was performed to investigate the levels of Tyr using ion beam modified TiNT thin film electrodes. The modified electrodes exhibited excellent sensor performances with Au-TiNT and N-TiNT within the Tyr concentration range of 100 fM -500 µM with limit of detection (LoD)1.76 nM and 1.25 nM respectively and response time ∼ 1 min. The results indicate that low energy ion beam modified TiNT/enzyme bio-electrodes can potentially be employed as a highly sensitive and portable sensor for real-time detection of l-tyrosine in wound fluids for the development of a smart bandage.


Assuntos
Técnicas Biossensoriais , Tirosina , Bandagens , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Íons , Titânio
8.
Sci Rep ; 9(1): 19862, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882767

RESUMO

An Electrochemical micro Analytical Device (EµAD) was fabricated for sensitive detection of organophosphate pesticide chlorpyrifos in the food chain. Gold microelectrode (µE) modified with Zinc based Metal Organic Framework (MOF-Basolite Z1200) and Acetylcholinesterase (AChE) enzyme served as an excellent electro-analytical transducer for the detection of chlorpyrifos. Electrochemical techniques such as Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV) were performed for electrochemical analysis of the developed EµAD. The sensor needs only 2 µL of the analyte and it was tested within the linear range of 10 to 100 ng/L. The developed EµAD's limit of detection (LoD) and sensitivity is 6 ng/L and 0.598 µ A/ng L-1/mm2 respectively. The applicability of the device for the detection of chlorpyrifos from the real vegetable sample was also tested within the range specified. The fabricated sensor showed good stability with a shelf-life of 20 days. The EµAD's response time is of 50 s, including an incubation time of 20 s. The developed EµAD was also integrated with commercially available low-cost, handheld potentiostat (k-Stat) using Bluetooth and the results were comparable with a standard electrochemical workstation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...