Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(41)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37402377

RESUMO

Many-body localised (MBL) phases of disordered, interacting quantum systems allow for exotic localisation protected quantum order in eigenstates at arbitrarily high energy densities. In this work, we analyse the manifestation of such order on the Hilbert-space anatomy of eigenstates. Quantified in terms of non-local Hilbert-spatial correlations of eigenstate amplitudes, we find that the spread of the eigenstates on the Hilbert-space graph is directly related to the order parameters which characterise the localisation protected order, and hence these correlations, in turn, characterise the order or lack thereof. Higher-point eigenstate correlations also characterise the different entanglement structures in the many-body localised phases, with and without order, as well as in the ergodic phase. The results pave the way for characterising the transitions between MBL phases and the ergodic phase in terms of scaling of emergent correlation lengthscales on the Hilbert-space graph.

2.
Phys Rev Lett ; 129(19): 190601, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399733

RESUMO

In a recent work [A. Deger et al., Phys. Rev. Lett. 129, 160601 (2022).PRLTAO0031-900710.1103/PhysRevLett.129.160601] we have shown that kinetic constraints can completely arrest many-body chaos in the dynamics of a classical, deterministic, translationally invariant spin system with the strength of the constraint driving a dynamical phase transition. Using extensive numerical simulations and scaling analyses we demonstrate here that this constraint-induced phase transition lies in the directed percolation universality class in both one and two spatial dimensions.

3.
Phys Rev Lett ; 129(16): 160601, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306744

RESUMO

We investigate the effect of kinetic constraints on classical many-body chaos in a translationally invariant Heisenberg spin chain using a classical counterpart of the out-of-time-ordered correlator (OTOC). The strength of the constraint drives a "dynamical phase transition" separating a delocalized phase, where the classical OTOC propagates ballistically, from a localized phase, where the OTOC does not propagate at all and the entire system freezes. This is unexpected given that all spin configurations are dynamically connected to each other. We show that localization arises due to the dynamical formation of frozen islands, contiguous segments of spins immobile due to the constraints, dominating over the melting of such islands.

4.
Phys Rev Lett ; 129(9): 090404, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083640

RESUMO

We introduce a model of nonunitary quantum dynamics that exhibits infinitely long-lived discrete spatiotemporal order robust against any unitary or dissipative perturbation. Ergodicity is evaded by combining a sequence of projective measurements with a local feedback rule that is inspired by Toom's "north-east-center" classical cellular automaton. The measurements in question only partially collapse the wave function of the system, allowing some quantum coherence to persist. We demonstrate our claims using numerical simulations of a Clifford circuit in two spatial dimensions which allows access to large system sizes, and also present results for more generic dynamics on modest system sizes. We also devise explicit experimental protocols realizing this dynamics using one- and two-qubit gates that are available on present-day quantum computing platforms.

5.
Phys Rev Lett ; 125(25): 250402, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416356

RESUMO

Many-body localization in interacting quantum systems can be cast as a disordered hopping problem on the underlying Fock-space graph. A crucial feature of the effective Fock-space disorder is that the Fock-space site energies are strongly correlated-maximally so for sites separated by a finite distance on the graph. Motivated by this, and to understand the effect of such correlations more fundamentally, we study Anderson localization on Cayley trees and random regular graphs, with maximally correlated disorder. Since such correlations suppress short distance fluctuations in the disorder potential, one might naively suppose they disfavor localization. We find however that there exists an Anderson transition, and indeed that localization is more robust in the sense that the critical disorder scales with graph connectivity K as sqrt[K], in marked contrast to KlnK in the uncorrelated case. This scaling is argued to be intimately connected to the stability of many-body localization. Our analysis centers on an exact recursive formulation for the local propagators as well as a self-consistent mean-field theory; with results corroborated using exact diagonalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA