Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39133098

RESUMO

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine. Computational tools were employed to forecast the tertiary framework, characteristics, and also to confirm the vaccine's composition. The potency was weighed through population coverage analysis and immune simulation. This project aims to create a multi-epitope vaccine to reduce P. aeruginosa-related illness and mortality using immunoinformatics resources. The ultimate complex has been determined to be stable, soluble, antigenic, and non-allergenic upon inspection of its physicochemical and immunological properties. Additionally, the protein exhibited acidic and hydrophilic characteristics. The Ramachandran plot, ProSA-web, ERRAT, and Verify3D were employed to ensure the final model's authenticity once the protein's three-dimensional structure had been established and refined. The vaccine model showed a significant binding score and stability when interacting with MHC receptors. Population coverage analysis indicated a global coverage rate of 83.40%, with the USA having the highest coverage rate, exceeding 90%. Moreover, the vaccine sequence underwent codon optimization before being cloned into the Escherichia coli plasmid vector pET-28a (+) at the EcoRI and EcoRV restriction sites. Our research has developed a vaccine against P. aeruginosa that has strong binding affinity and worldwide coverage, offering an acceptable way to mitigate nosocomial infections.


Assuntos
Biologia Computacional , Infecções por Pseudomonas , Pseudomonas aeruginosa , Sepse , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Sepse/prevenção & controle , Sepse/imunologia , Sepse/microbiologia , Biologia Computacional/métodos , Epitopos/imunologia , Epitopos/química , Pneumonia/prevenção & controle , Pneumonia/imunologia , Pneumonia/microbiologia , Vacinas contra Pseudomonas/imunologia , Vacinas Bacterianas/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
2.
Health Sci Rep ; 7(7): e2233, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966075

RESUMO

Background and Aims: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and challenges. While ASD is primarily associated with atypical social and communicative behaviors, increasing research has pointed towards the involvement of various brain regions, including the cerebellum. This review article aims to provide a comprehensive overview of the role of cerebellar lobules in ASD, highlighting recent findings and potential therapeutic implications. Methods: Using published articles found in PubMed, Scopus, and Google Scholar, we extracted pertinent data to complete this review work. We have searched for terms including anatomical insights, neuroimaging, neurobiological, and autism spectrum disorder. Results: The intricate relationship between the cerebellum and other brain regions linked to ASD has been highlighted by neurobiological research, which has shown abnormalities in neurotransmitter systems and cerebellar circuitry. The relevance of the cerebellum in the pathophysiology of ASD has been further highlighted by anatomical studies that have revealed evidence of cerebellar abnormalities, including changes in volume, morphology, and connectivity. Conclusion: Thorough knowledge of the cerebellum's function in ASD may lead to new understandings of the underlying mechanisms of the condition and make it easier to create interventions and treatments that are more specifically targeted at treating cerebellar dysfunction in ASD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA