Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38932687

RESUMO

The objective of this study is to derive mathematical equations that closely describe published data on world record running speed as a function of distance, age and sex. Running speed declines with increasing distance and age. Over long distances, where aerobic metabolism is dominant, speed declines in proportion to the logarithm of distance. Over short distances, anaerobic metabolism contributes significantly to performance, and speed is increased relative to the trend of the long-distance data. Equations are derived that explicitly represent these effects. The decline in speed with age is represented by an age-dependent multiplicative factor, which exhibits increasing sensitivity to age as age increases. Using these equations, data are analyzed separately for males and females, and close fits to published data are demonstrated, particularly for younger age groups. These equations provide insight into the contributions of aerobic and anaerobic components of metabolism to athletic performance and a framework for comparisons of performance across wide ranges of distance and age.

2.
Transl Behav Med ; 14(3): 197-205, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37897404

RESUMO

Despite growing acceptability of health-related social needs (HRSN) screening and increasing policy incentives for adoption, clinical implementation of HRSN screening remains low. HRSN screening has been particularly difficult for Community Health Centers (CHCs), which have limited resources to implement and sustain new workflows. While CHCs provide care to patients with disproportionately high levels of unmet social needs, identifying HRSN screening implementation strategies that take CHC-specific contexts into account remains elusive. This study uses the Practical Robust Implementation and Sustainability Model (PRISM) to design an implementation strategy accounting for the unique context of CHCs. We used Rapid Ethnographic Assessment observations and stakeholder focus groups to identify current workflow barriers and facilitators to HRSN screening, and to develop implementation strategies that include multi-level contexts and perspectives. We identified eight themes contributing to low screening implementation: perceived stigma around screening; need for community-based solutions; re-confirming organizational priorities and values; Electronic Medical Record (EMR) limitations; multi-tasking pressures limiting implementation; staff turnover; limited knowledge of regulatory requirements; and community resource availability for referral. Based on the themes, we identified implementation strategies including non-EMR data collection; integration into the workflow for multiple staff members; creation of new training and educational modules; and identification of peer champions for retraining in real time. Administrative requirements are necessary but not sufficient for implementation of HRSN screening in CHCs. Resource-constrained settings benefit from context-specific stakeholder engagement to improve implementation success. The use of PRISM ensured contextual factors were central to the implementation strategy design.


Health care systems are encouraged to screen for health-related social needs (HRSN), such as housing and food insecurity, yet it has been difficult to implement these new screening workflows. This is especially true for Community Health Centers (CHCs) that have limited resources to implement new workflows. Using a framework that accounts for the unique environment of CHCs, we observed current workflows and conducted focus groups to develop an implementation strategy to facilitate HRSN screening. The new strategy used paper-based workflows to facilitate patient participation and identified clinical champions to engage staff. While these findings are useful in CHCs that might not have sufficient resources to develop screening processes in the Electronic Medical Record, they are also applicable to other low-resourced settings that might want to include HRSNs in patient care, but do not have resources or staff to do it.


Assuntos
Centros Comunitários de Saúde , Encaminhamento e Consulta , Humanos , Coleta de Dados , Grupos Focais , Escolaridade
3.
Physiol Rep ; 11(17): e15806, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653565

RESUMO

Oxygen transport from the lungs to peripheral tissue is dependent on the affinity of hemoglobin for oxygen. Recent experimental data have suggested that the maximum human capacity for oxygen uptake and utilization (V̇O2 max) at sea level and altitude (~3000 m) is sensitive to alterations in hemoglobin-oxygen affinity. However, the effect of such alterations on V̇O2 max at extreme altitudes remains largely unknown due to the rarity of mutations affecting hemoglobin-oxygen affinity. This work uses a mathematical model that couples pulmonary oxygen uptake with systemic oxygen utilization under conditions of high metabolic demand to investigate the effect of hemoglobin-oxygen affinity on V̇O2 max as a function of altitude. The model includes the effects of both diffusive and convective limitations on oxygen transport. Pulmonary oxygen uptake is calculated using a spatially-distributed model that accounts for the effects of hematocrit and hemoglobin-oxygen affinity. Systemic oxygen utilization is calculated assuming Michaelis-Menten kinetics. The pulmonary and systemic model components are solved iteratively to compute predicted arterial and venous oxygen levels. Values of V̇O2 max are predicted for several values of hemoglobin-oxygen affinity and hemoglobin concentration based on data from humans with hemoglobin mutations. The model predicts that increased hemoglobin-oxygen affinity leads to increased V̇O2 max at altitudes above ~4500 m.


Assuntos
Altitude , Oxigênio , Humanos , Consumo de Oxigênio , Artérias , Hemoglobinas
4.
Am J Physiol Regul Integr Comp Physiol ; 324(5): R625-R634, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878486

RESUMO

During hypoxic exposure, humans with high-affinity hemoglobin (and compensatory polycythemia) have blunted increases in heart rate compared with healthy humans with typical oxyhemoglobin dissociation curves. This response may be associated with altered autonomic control of heart rate. Our hypothesis-generating study aimed to investigate cardiac baroreflex sensitivity and heart rate variability among nine humans with high-affinity hemoglobin [6 females, O2 partial pressure at 50% [Formula: see text] (P50) = 16 ± 1 mmHg] compared with 12 humans with typical affinity hemoglobin (6 F, P50 = 26 ± 1 mmHg). Participants breathed normal room air for a 10-min baseline, followed by 20 min of isocapnic hypoxic exposure, designed to lower the arterial partial pressure O2 ([Formula: see text]) to ∼50 mmHg. Beat-by-beat heart rate and arterial blood pressure were recorded. Data were averaged in 5-min periods throughout the hypoxia exposure, beginning with the last 5 min of baseline in normoxia. Spontaneous cardiac baroreflex sensitivity and heart rate variability were determined using the sequence method and the time and frequency domain analyses, respectively. Cardiac baroreflex sensitivity was lower in humans with high-affinity hemoglobin than controls at baseline and during isocapnic hypoxic exposure (normoxia: 7 ± 4 vs. 16 ± 10 ms/mmHg, hypoxia minutes 15-20: 4 ± 3 vs. 14 ± 11 ms/mmHg; group effect: P = 0.02, high-affinity hemoglobin vs. control, respectively). Heart rate variability calculated in both the time (standard deviation of the N-N interval) and frequency (low frequency) domains was lower in humans with high-affinity hemoglobin than in controls (all P < 0.05). Our data suggest that humans with high-affinity hemoglobin may have attenuated cardiac autonomic function.


Assuntos
Policitemia , Feminino , Humanos , Coração , Sistema Nervoso Autônomo , Pressão Arterial , Frequência Cardíaca/fisiologia , Hipóxia , Barorreflexo/fisiologia , Pressão Sanguínea
5.
Physiol Rep ; 10(10): e15303, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581743

RESUMO

In the vascular system, an extensive network structure provides convective and diffusive transport of oxygen to tissue. In the microcirculation, parameters describing network structure, blood flow, and oxygen transport are highly heterogeneous. This heterogeneity can strongly affect oxygen supply and organ function, including reduced oxygen uptake in the lung and decreased oxygen delivery to tissue. The causes of heterogeneity can be classified as extrinsic or intrinsic. Extrinsic heterogeneity refers to variations in oxygen demand in the systemic circulation or oxygen supply in the lungs. Intrinsic heterogeneity refers to structural heterogeneity due to stochastic growth of blood vessels and variability in flow pathways due to geometric constraints, and resulting variations in blood flow and hematocrit. Mechanisms have evolved to compensate for heterogeneity and thereby improve oxygen uptake in the lung and delivery to tissue. These mechanisms, which involve long-term structural adaptation and short-term flow regulation, depend on upstream responses conducted along vessel walls, and work to redistribute flow and maintain blood and tissue oxygenation. Mathematically, the variance of a functional quantity such as oxygen delivery that depends on two or more heterogeneous variables can be reduced if one of the underlying variables is controlled by an appropriate compensatory mechanism. Ineffective regulatory mechanisms can result in poor oxygen delivery even in the presence of adequate overall tissue perfusion. Restoration of endothelial function, and specifically conducted responses, should be considered when addressing tissue hypoxemia and organ failure in clinical settings.


Assuntos
Hemodinâmica , Oxigênio , Adaptação Fisiológica , Humanos , Hipóxia , Microcirculação/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio
6.
Exp Physiol ; 107(8): 854-863, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35603981

RESUMO

NEW FINDINGS: What is the central question of this study? Do humans with high-affinity haemoglobin (HAH) demonstrate attenuated skeletal muscle deoxygenation during normoxic and hypoxic exercise? What is the main finding and its importance? Examination of near-infrared spectroscopy-derived muscle oxygenation profiles suggests that fractional oxygen extraction is blunted during hypoxic exercise in humans with HAH compared with control subjects. However, muscle tissue oxygen saturation levels were higher in humans with HAH during exercise in normoxia compared with control subjects. These alterations in fractional oxygen extraction in humans with HAH might influence blood flow regulation and exercise capacity during hypoxia. ABSTRACT: Recently, researchers in our laboratory have shown that humans with genetic mutations resulting in high-affinity haemoglobin (HAH) demonstrate better maintained aerobic capacity and peak power output during hypoxic exercise versus normoxic exercise in comparison to humans with normal-affinity haemoglobin. However, the influence of HAH on tissue oxygenation within exercising muscle during normoxia and hypoxia is unknown. Therefore, we examined near-infrared spectroscopy-derived oxygenation profiles of the vastus lateralis during graded cycling exercise in normoxia and hypoxia among humans with HAH (n = 5) and control subjects with normal-affinity haemoglobin (n = 12). The HAH group elicited a blunted increase of deoxygenated haemoglobin + myoglobin during hypoxic exercise compared with the control group (P = 0.03), suggesting reduced fractional oxygen extraction in the HAH group. In addition, the HAH group maintained a higher level of muscle tissue oxygen saturation during normoxic exercise (HAH, 75 ± 4% vs. controls, 65 ± 3%, P = 0.049) and there were no differences between groups in muscle tissue oxygen saturation during hypoxic exercise (HAH, 68 ± 3% vs. controls, 68 ± 2%, P = 0.943). Overall, our results suggest that humans with HAH might demonstrate divergent patterns of fractional oxygen extraction during hypoxic exercise and elevated muscle tissue oxygenation during normoxic exercise compared with control subjects.


Assuntos
Exercício Físico , Hemoglobinas , Músculo Esquelético , Consumo de Oxigênio , Oxigênio , Exercício Físico/fisiologia , Hemoglobinas/metabolismo , Humanos , Hipóxia , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia
7.
J Appl Physiol (1985) ; 131(4): 1211-1218, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410848

RESUMO

Hypoxic pulmonary vasoconstriction (HPV) plays an essential role in distributing blood in the lung to enhance ventilation-perfusion matching and blood oxygenation. In this study, a theoretical model of the pulmonary vasculature is used to predict the effects of vasoconstriction over specified ranges of vessel diameters on pulmonary vascular resistance (PVR). The model is used to evaluate the ability of hypothesized mechanisms of HPV to account for observed levels of PVR elevation during hypoxia. The vascular structure from pulmonary arteries to capillaries is represented using scaling laws. Vessel segments are modeled as resistive elements and blood flow rates are computed from physical principles. Direct vascular responses to intravascular oxygen levels have been proposed as a mechanism of HPV. In the lung, significant changes in oxygen level occur only in vessels less than 60 µm in diameter. The model shows that observed levels of hypoxic vasoconstriction in these vessels alone cannot account for the elevation of PVR associated with HPV. However, the elevation in PVR associated with HPV can be accounted for if larger upstream vessels also constrict. These results imply that upstream signaling by conducted responses to engage constriction of arterioles plays an essential role in the elevation of PVR during HPV.NEW & NOTEWORTHY A theoretical model of the pulmonary vasculature is used to predict the effects of vasoconstriction over specified ranges of vessel diameters on pulmonary vascular resistance (PVR). The model shows that observed levels of hypoxic vasoconstriction in terminal vessels cannot account for the elevation of PVR associated with hypoxic pulmonary vasoconstriction (HPV). Upstream signaling by conducted responses to engage constriction of arterioles, therefore, plays an essential role in the elevation of PVR during HPV.


Assuntos
Hipertensão Pulmonar , Vasoconstrição , Humanos , Hipóxia , Pulmão , Artéria Pulmonar , Circulação Pulmonar , Resistência Vascular
8.
Mayo Clin Proc ; 96(4): 1017-1032, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33714599

RESUMO

The oxygen transport cascade describes the physiological steps that bring atmospheric oxygen into the body where it is delivered and consumed by metabolically active tissue. As such, the oxygen cascade is fundamental to our understanding of exercise in health and disease. Our narrative review will highlight each step of the oxygen transport cascade from inspiration of atmospheric oxygen down to mitochondrial consumption in both healthy active males and females along with clinical conditions. We will focus on how different steps interact along with principles of homeostasis, physiological redundancies, and adaptation. In particular, we highlight some of the parallels between elite athletes and clinical conditions in terms of the oxygen cascade.


Assuntos
Atletas/estatística & dados numéricos , Exercício Físico/fisiologia , Voluntários Saudáveis/estatística & dados numéricos , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Microcirculation ; 28(3): e12673, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33236393

RESUMO

Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.


Assuntos
Estado Terminal , Células Endoteliais , Microcirculação , Humanos , Hipóxia , Oxigênio , Perfusão
11.
J Physiol ; 598(8): 1475-1490, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923331

RESUMO

KEY POINTS: Theoretical models suggest there is no benefit of high affinity haemoglobin to preserve maximal oxygen uptake in acute hypoxia but the comparative biology literature has many examples of species that are evolutionarily adapted to hypoxia and have high affinity haemoglobin. We studied humans with high affinity haemoglobin and compensatory polycythaemia. These subjects performed maximal exercise tests in normoxia and hypoxia to determine how their altered haemoglobin affinity impacts hypoxic exercise tolerance. The high affinity haemoglobin participants demonstrated an attenuated decline in maximal aerobic capacity in acute hypoxia. Those with high affinity haemoglobin had no worsening of pulmonary gas exchange during hypoxic exercise but had greater lactate and lower pH than controls for all exercise bouts. High affinity haemoglobin and compensatory polycythaemia mitigated the decline in exercise performance in acute hypoxia through a higher arterial oxygen content and an unchanged pulmonary gas exchange. ABSTRACT: The longstanding dogma is that humans exhibit an acute reduction in haemoglobin (Hb) binding affinity for oxygen that facilitates adaptation to moderate hypoxia. However, many animals have adapted to high altitude through enhanced Hb binding affinity for oxygen. The objective of the study was to determine whether high affinity haemoglobin (HAH) affects maximal and submaximal exercise capacity. To accomplish this, we recruited individuals (n = 11, n = 8 females) with HAH (P50  = 16 ± 1 mmHg), had them perform normoxic and acute hypoxic (15% inspired oxygen) maximal exercise tests, and then compared their results to matched controls (P50  = 26 ± 1, n = 14, n = 8 females). Cardiorespiratory and arterial blood gases were collected throughout both exercise tests. Despite no difference in end-exercise arterial oxygen tension in hypoxia (59 ± 6 vs. 59 ± 9 mmHg for controls and HAH, respectively), the HAH subjects' oxyhaemoglobin saturation ( Sa,O2 ) was ∼7% higher. Those with HAH had an attenuated decline in maximal oxygen uptake ( V̇O2max ) (4 ± 5% vs. 12 ± %, p < 0.001) in hypoxia and the change in V̇O2max between trials was related to the change in SaO2 (r = -0.75, p < 0.0001). Compared to normoxia, the controls' alveolar-to-arterial oxygen gradient significantly increased during hypoxic exercise, whereas pulmonary gas exchange in HAH subjects was unchanged between the two exercise trials. However, arterial lactate was significantly higher and arterial pH significantly lower in the HAH subjects for both exercise trials. We conclude that HAH attenuates the decline in maximal aerobic capacity and preserves pulmonary gas exchange during acute hypoxic exercise. Our data support the comparative biology literature indicating that HAH is a positive adaptation to acute hypoxia.


Assuntos
Exercício Físico , Hipóxia , Animais , Teste de Esforço , Feminino , Hemoglobinas , Humanos , Oxigênio , Consumo de Oxigênio , Troca Gasosa Pulmonar
12.
J Appl Physiol (1985) ; 127(6): 1622-1631, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647724

RESUMO

Arterial oxygen tension and oxyhemoglobin saturation (SaO2) decrease in parallel during hypoxia. Distinguishing between changes in oxygen tension and oxygen content as the relevant physiological stimulus for cardiorespiratory alterations remains challenging. To overcome this, we recruited nine individuals with hemoglobinopathy manifesting as high-affinity hemoglobin [HAH; partial pressure at 50% SaO2 (P50) = 16 ± 0.4 mmHg] causing greater SaO2 at a given oxygen partial pressure compared with control subjects (n = 12, P50 = 26 ± 0.4 mmHg). We assessed ventilatory and cardiovascular responses to acute isocapnic hypoxia, iso-oxic hypercapnia, and 20 min of isocapnic hypoxia (arterial Po2 = 50 mmHg). Blood gas alterations were achieved with dynamic end-tidal forcing. When expressed as a function of the logarithm of oxygen partial pressure, ventilatory sensitivity to hypoxia was not different between groups. However, there was a significant difference when expressed as a function of SaO2. Conversely, the rise in heart rate was blunted in HAH subjects when expressed as a function of partial pressure but similar when expressed as a function of SaO2. Ventilatory sensitivity to hypercapnia was not different between groups. During sustained isocapnic hypoxia, the rise in minute ventilation was similar between groups; however, heart rate was significantly greater in the controls during 3 to 9 min of exposure. Our results support the notion that oxygen tension, not content, alters cellular Po2 in the chemosensors and drives the hypoxic ventilatory response. Our study suggests that in addition to oxygen partial pressure, oxygen content may also influence the heart rate response to hypoxia.NEW & NOTEWORTHY We dissociated the effects of oxygen content and pressure of cardiorespiratory regulation studying individuals with high-affinity hemoglobin (HAH). During hypoxia, the ventilatory response, expressed as a function of oxygen tension, was similar between HAH variants and controls; however, the rise in heart rate was blunted in the variants. Our work supports the notion that the hypoxic ventilatory response is regulated by oxygen tension, whereas cardiovascular regulation may be influenced by arterial oxygen content and tension.


Assuntos
Hipóxia/sangue , Hipóxia/fisiopatologia , Oxigênio/sangue , Adulto , Gasometria/métodos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Hipercapnia/sangue , Hipercapnia/fisiopatologia , Masculino , Pressão Parcial , Respiração
13.
J Physiol ; 597(16): 4193-4202, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31290158

RESUMO

KEY POINTS: Haemoglobin affinity is an integral concept in exercise physiology that impacts oxygen uptake, delivery and consumption. How chronic alterations in haemoglobin affinity impact physiology is unknown. Using human haemoglobin variants, we demonstrate that the affinity of haemoglobin for oxygen is highly correlated with haemoglobin concentration. Using the Fick equation, we model how altered haemoglobin affinity and the associated haemoglobin concentration influences oxygen consumption at rest and during exercise via alterations in cardiac output and mixed-venous PO2 . The combination of low oxygen affinity haemoglobin and reduced haemoglobin concentration seen in vivo may be unable to support oxygen uptake during moderate or heavy exercise. ABSTRACT: The physiological implications, with regard to exercise, of altered haemoglobin affinity for oxygen are not fully understood. Data from the Mayo Clinic Laboratories database of rare human haemoglobin variants reveal a strong inverse correlation (r = -0.82) between blood haemoglobin concentration and P50 , an index of oxygen affinity [Hb = -0.3135(P50 ) + 23.636]. In the present study, observed P50 values for high, normal and low oxygen-affinity haemoglobin variants (13, 26 and 39 mmHg) and corresponding haemoglobin concentrations (19.5, 15.5 and 11.4 g dL-1 respectively) are used to model oxygen consumption as a fraction of delivery at rest ( V̇O2  = 0.25 L min-1 , cardiac output = 5.70 L min-1 ) and during exercise ( V̇O2  = 2.75 L min-1 , cardiac output = 18.9 l min-1 ). With high-affinity haemoglobin, the model shows that normal levels of oxygen consumption can be achieved at rest and during exercise at the assumed cardiac output levels, with reduced oxygen extraction both at rest (16.8% high affinity vs. 21.7% normal) and during exercise (55.8% high affinity vs. 72.2% normal). With low-affinity haemoglobin, which predicts low haemoglobin concentration, oxygen consumption at rest can be sustained with the assumed cardiac output, with increased oxygen extraction (31.1% low affinity vs. 21.7% normal). However, exercise at 2.75 l min-1 cannot be achieved with the assumed cardiac output, even with 100% oxygen extraction. In conclusion, the model indicates chronic alterations in P50 associate directly with Hb concentration, highlighting that human Hb variants can serve as 'experiments of nature' to address fundamental hypotheses on oxygen transport and exercise.


Assuntos
Hemoglobinas/química , Hemoglobinas/genética , Modelos Biológicos , Oxigênio/metabolismo , Humanos , Consumo de Oxigênio/fisiologia
14.
Respir Physiol Neurobiol ; 261: 75-79, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30321626

RESUMO

Under resting normoxic conditions, the healthy lung has ample oxygen uptake capacity relative to oxygen demand, but during exercise, increased oxygen demand and utilization become increasingly dependent on ventilation-perfusion matching. A mathematical model is used to investigate the effect of pulmonary flow heterogeneity, as characterized by the coefficient of variation (CV) of capillary blood flow, on pulmonary oxygen uptake in exercise. The model reveals that any level of heterogeneity up to a CV of 3 is consistent with the observed level of arterial oxygen tension under resting conditions, but that such high levels of heterogeneity are incompatible with the levels of oxygen uptake observed during exercise. If a normal diffusing capacity is assumed, the best fit to literature data on arterial oxygen content of exercising humans under normoxic and hypoxic conditions is found with a relatively low CV of 0.48, suggesting that local flow regulation mechanisms such as hypoxic pulmonary vasoconstriction play an important role in ventilation-perfusion matching during exercise.


Assuntos
Exercício Físico/fisiologia , Hemodinâmica , Pulmão/metabolismo , Modelos Biológicos , Oxigênio/metabolismo , Hemodinâmica/fisiologia , Humanos
15.
A A Pract ; 10(5): 100-102, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028637

RESUMO

Epicardial pacing wires are routinely used to avoid hemodynamic instability due to perioperative arrhythmias after cardiac surgery. In rare cases, pacing wires themselves can be associated with potentially life-threatening complications. Herein, we present a novel case of hemorrhagic shock and hemoperitoneum after temporary epicardial pacing wire removal.

16.
Front Physiol ; 5: 192, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904428

RESUMO

A mathematical simulation of flow regulation in vascular networks is used to investigate the interaction between arteriolar vasoconstriction due to sympathetic nerve activity (SNA) and vasodilation due to increased oxygen demand. A network with 13 vessel segments in series is used, each segment representing a different size range of arterioles or venules. The network includes five actively regulating arteriolar segments with time-dependent diameters influenced by shear stress, wall tension, metabolic regulation, and SNA. Metabolic signals are assumed to be propagated upstream along vessel walls via a conducted response. The model exhibits functional sympatholysis, in which sympathetic vasoconstriction is partially abrogated by increases in metabolic demand, and sympathetic escape, in which SNA elicits an initial vasoconstriction followed by vasodilation. In accordance with experimental observations, these phenomena are more prominent in small arterioles than in larger arterioles when SNA is assumed to act equally on arterioles of all sizes. The results imply that a mechanism based on the competing effects on arteriolar tone of SNA and conducted metabolic signals can account for several observed characteristics of functional sympatholysis, including the different responses of large and small arterioles.

18.
J Theor Biol ; 351: 1-8, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24560722

RESUMO

The process of pulmonary oxygen uptake is analyzed to obtain an explicit equation for lung oxygen diffusing capacity in terms of hematocrit and pulmonary capillary diameter. An axisymmetric model with discrete cylindrical erythrocytes is used to represent radial diffusion of oxygen from alveoli through the alveolar-capillary membrane into pulmonary capillaries, through the plasma, and into erythrocytes. Analysis of unsteady diffusion due to the passage of the erythrocytes shows that transport of oxygen through the alveolar-capillary membrane occurs mainly in the regions adjacent to erythrocytes, and that oxygen transport through regions adjacent to plasma gaps can be neglected. The model leads to an explicit formula for diffusing capacity as a function of geometric and oxygen transport parameters. For normal hematocrit and a capillary diameter of 6.75 µm, the predicted diffusing capacity is 102 ml O2 min⁻¹ mmHg⁻¹. This value is 30-40% lower than values estimated previously by the morphometric method, which considers the total membrane area and the specific uptake rate of erythrocytes. Diffusing capacity is shown to increase with increasing hematocrit and decrease with increasing capillary diameter and increasing thickness of the membrane. Simulations of pulmonary oxygen uptake in humans under conditions of exercise or hypoxia based show closer agreement with experimental data than previous models, but still overestimate oxygen uptake. The remaining discrepancy may reflect effects of heterogeneity of perfusion and ventilation in the lung.


Assuntos
Modelos Biológicos , Consumo de Oxigênio/fisiologia , Capacidade de Difusão Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia , Algoritmos , Capilares/metabolismo , Eritrócitos/metabolismo , Hematócrito , Humanos
19.
Physiol Rep ; 1(3): e00050, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24040516

RESUMO

In striated muscle, the number of capillaries containing moving red blood cells increases with increasing metabolic demand. This phenomenon, termed capillary recruitment, has long been recognized but its mechanism has been unclear. Here, a theoretical model for metabolic blood flow regulation in a heterogeneous network is used to test the hypothesis that capillary recruitment occurs as a result of active control of arteriolar diameters, combined with unequal partition of hematocrit at diverging microvascular bifurcations. The network structure is derived from published observations of hamster cremaster muscle in control and dilated states. The model for modulation of arteriolar diameters includes length-tension characteristics of vascular smooth muscle and responses of smooth muscle tone to myogenic, shear-dependent, and metabolic stimuli. Blood flow is simulated including non-uniform hematocrit distribution. Convective and diffusive oxygen transport in the network is simulated. Oxygen-dependent metabolic signals are assumed to be conducted upstream from distal vessels to arterioles. With increasing oxygen demand, arterioles dilate, blood flow increases, and the numbers of flowing arterioles and capillaries, as defined by red blood cell flux above a small threshold value, increase. Unequal hematocrit partition at diverging bifurcations contributes to recruitment and enhances tissue oxygenation. The results imply that capillary recruitment, as observed in the hamster cremaster preparations, can occur as a consequence of local control of arteriolar tone and the resulting non-uniform changes in red blood cell fluxes, and provide an explanation for observations of sequential recruitment of individual capillaries in response to modulation of terminal arteriolar diameter.

20.
Am J Physiol Heart Circ Physiol ; 302(10): H1945-52, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22408023

RESUMO

The objective of this study is to compare the effectiveness of metabolic signals derived from erythrocytes and derived from the vessel wall for regulating blood flow in heterogeneous microvascular networks. A theoretical model is used to simulate blood flow, mass transport, and vascular responses. The model accounts for myogenic, shear-dependent, and metabolic flow regulation. Metabolic signals are assumed to be propagated upstream along vessel walls via a conducted response. Arteriolar tone is assumed to depend on the conducted metabolic signal as well as local wall shear stress and wall tension, and arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model shows that under certain conditions metabolic regulation based on wall-derived signals can be more effective in matching perfusion to local oxygen demand relative to regulation based on erythrocyte-derived signals, resulting in higher extraction and lower oxygen deficit. The lower effectiveness of the erythrocyte-derived signal is shown to result in part from the unequal partition of hematocrit at diverging bifurcations, such that low-flow vessels tend to receive a reduced hematocrit and thereby experience a reduced erythrocyte-derived metabolic signal. The model simulations predict that metabolic signals independent of erythrocytes may play an important role in local metabolic regulation of vascular tone and flow distribution in heterogeneous microvessel networks.


Assuntos
Eritrócitos/fisiologia , Mesentério/irrigação sanguínea , Microvasos/fisiologia , Modelos Biológicos , Modelos Teóricos , Fluxo Sanguíneo Regional/fisiologia , Animais , Hemodinâmica/fisiologia , Metabolismo/fisiologia , Microcirculação/fisiologia , Modelos Animais , Consumo de Oxigênio/fisiologia , Ratos , Transdução de Sinais/fisiologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...