Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571929

RESUMO

Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/fisiologia , Ativação do Canal Iônico , Canais Iônicos/fisiologia , Mecanotransdução Celular , Morfogênese , Animais , Humanos
2.
Cancer Microenviron ; 12(1): 17-27, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31004332

RESUMO

Though the existence of cancer stem cells remained enigmatic initially, over the time their participation in tumorigenesis and tumor progression has become highly evident. Today, they are also appreciated as the causal element for tumor heterogeneity and drug-resistance. Cancer stem cells activate a set of molecular pathways some of which are triggered by the unique mechanical properties of the tumor tissue stroma. A relatively new field called mechanobiology has emerged, which aims to critically evaluate the mechanical properties associated with biological events like tissue morphogenesis, cell-cell or cell-matrix interactions, cellular migration and also the development and progression of cancer. Development of more realistic model systems and biophysical instrumentation for observation and manipulation of cell-dynamics in real-time has invoked a hope for some novel therapeutic modalities against cancer in the future. This review discusses the fundamental concepts of cancer stem cells from an intriguing viewpoint of mechanobiology and some important breakthroughs to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA