Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Viruses ; 15(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38005952

RESUMO

(1) Background: Palivizumab has been an approved preventative monoclonal antibody for respiratory syncytial virus (RSV) infection for over two decades. However, due to its high cost and requirement for multiple intramuscular injections, its use has been limited mostly to high-income countries. Following our previous study showing the successful lung deposition of aerosolised palivizumab in lambs, this current study evaluated the "proof-of-principle" effect of aerosolised palivizumab delivered as a therapeutic to neonatal lambs following RSV infection. (2) Methods: Neonatal lambs were intranasally inoculated with RSV-A2 on day 0 (day 3 post-birth) and treated with aerosolised palivizumab 3 days later (day 3 post-inoculation). Clinical symptoms, RSV viral load and inflammatory response were measured post-inoculation. (3) Results: Aerosolised therapeutic delivery of palivizumab did not reduce RSV viral loads in the nasopharynx nor the bronchoalveolar lavage fluid, but resulted in a modest reduction in inflammatory response at day 6 post-inoculation compared with untreated lambs. (4) Conclusions: This proof-of-principle study shows some evidence of aerosolised palivizumab reducing RSV inflammation, but further studies using optimized protocols are needed in order to validate these findings.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Ovinos , Palivizumab , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Antivirais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico
2.
Br J Pharmacol ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658546

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G-protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti-inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision-cut lung slices (PCLS). EXPERIMENTAL APPROACH: PCLS from 8-week-old male and female C57BL/6 mice, intrapulmonary arteries were pre-contracted with 5-HT for concentration-response curves to compound 17b and 43, and standard-of-care drugs, sildenafil, iloprost and riociguat. Compound 17b-mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF-α or LPS. Cytokine release from TNF-α- or LPS-treated PCLS ± compound 17b was measured. KEY RESULTS: Compound 17b elicited concentration-dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH-relevant cytokines via FPR2. CONCLUSIONS AND IMPLICATIONS: Vasodilation to compound 17b but not standard-of-care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH-relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR-based pharmacotherapy to treat PAH.

3.
Can Respir J ; 2023: 1522593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710924

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by excessive deposition of extracellular matrix in the interstitial lung parenchyma, often manifested by dyspnea and progressive loss of lung function. The role of inflammation in the pathogenesis of IPF is not well understood. This study evaluated the histopathological and inflammatory components of bleomycin-induced pulmonary fibrosis in mouse and sheep models, in terms of their ability to translate to the human IPF. Merino sheep (n = 8) were bronchoscopically administered with two bleomycin infusions, two weeks apart, into a caudal lung segment, with a saline (control) administered into a caudal segment in the opposite lung. Balb/c mice were twice intranasally instilled, one week apart, with either bleomycin (n = 7); or saline (control, n = 7). Lung samples were taken for the histopathological assessment 28 days in sheep and 21 days in mice after the first bleomycin administration. We observed tertiary lymphoid aggregates, in the fibrotic lung parenchyma of sheep, but not in mouse lung tissues exposed to bleomycin. B-cell and T-cell infiltration significantly increased in sheep lung tissues compared to mouse lung tissues due to bleomycin injury. Statistical analysis showed that the fibrotic score, fibrotic fraction, and tissue fraction significantly increased in sheep lung tissues compared to murine lung tissues. The presence of tertiary lymphoid aggregates in the lung parenchyma and increased infiltration of T-cells and B-cells, in the sheep model, may be useful for the future study of the underlying inflammatory disease mechanisms in the lung parenchyma of IPF patients.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Pulmão/patologia , Inflamação
4.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319916

RESUMO

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Assuntos
Antioxidantes , Hipersensibilidade , Camundongos , Humanos , Animais , Leucócitos Mononucleares , Ovalbumina , Epigênese Genética , Anti-Inflamatórios
5.
Immun Ageing ; 19(1): 47, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273175

RESUMO

BACKGROUND: Vaccine efficiency has a significant role in the public perception of vaccination. The current study was designed to evaluate the efficacy of COVID-19 vaccines (AZD-1222, Sputnik-V, Sinopharm, and Covaxin) and the effect of gender on vaccine efficacy. We evaluated the efficacy of these vaccines among 214 health care employees in Iran. Blood samples were taken from all participants on day 0 and 14 days after the second dose. Humoral responses were evaluated by the PT-SARS-CoV-2-Neutralizing-Ab-96. RESULTS: The frequency of immunized individuals in the Sputnik V and AZD-1222 groups was 91% and 86%, respectively. This rate was 61% and 67% for Sinopharm and Covaxin vaccines. A comparison of the results obtained from the effectiveness of the vaccines between female and male groups did not demonstrate a significant difference. CONCLUSION: According to the results, Sputnik V and AZD-1222 vaccines were more effective than Sinopharm and Covaxin vaccines. Moreover, the effectiveness of these vaccines is not related to gender.

6.
Work ; 69(4): 1191-1196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421000

RESUMO

BACKGROUND: The first case of coronavirus disease 2019 (COVID-19) was reported in December 2019 in Wuhan, China. Healthcare workers (HCWs) are at high risk of acquiring and spreading the COVID-19 infection; using personal protective equipment (PPE) reduces the risk of COVID-19 infection in HCWs. OBJECTIVE: Our study aimed to investigate the seroprevalence of COVID-19 IgG, IgM antibodies among HCWs as well as identifying the factors associated with this seroprevalence. METHODS: This cross-sectional study was performed from July to August 2020 on healthcare workers at two COVID-19 referral hospitals of Birjand University of Medical Sciences. The level of COVID-19 IgG and IgM antibodies in sera was measured by commercial qualitative ELISA kits. RESULTS: In total, 192 individuals participated in the study: physicians (31.25%), nurses (30.2%). 84.2% of participants had contact with confirmed COVID-19 cases and among them 42.9 % of had close contact with COVID-19 patients for more than 3 months, and 31% reported close contact with more than 50 confirmed COVID-19 cases. Mask and gloves were the most frequently used personal protective equipment (PPE) with 92.4% and 77.2% of usage. CONCLUSIONS: The results of the current study showed high level of adherence to the use of PPE among HCWs as well as very low prevalence of seropositivity for of COVID-19 antibodies, hence confirming the effectiveness of PPE in protecting HCWs among COVVID-19 and possibly any other similar infections.


Assuntos
COVID-19 , Equipamento de Proteção Individual , Estudos Transversais , Pessoal de Saúde , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos
7.
Biomaterials ; 273: 120796, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894403

RESUMO

Asthma (chronic allergic airways disease, AAD) is characterized by airway inflammation (AI), airway remodeling (AWR) and airway hyperresponsiveness (AHR). Current treatments for AAD mainly focus on targeting AI and its contribution AHR, with the use of corticosteroids. However, there are no therapies for the direct treatment of AWR, which can contribute to airway obstruction, AHR and corticosteroid resistance independently of AI. The acute heart failure drug, serelaxin (recombinant human gene-2 relaxin, RLX), has potential anti-remodeling and anti-fibrotic effects but only when continuously infused or injected to overcome its short half-life. To alleviate this limitation, we conjugated serelaxin to biodegradable and noninflammatory nanoparticles (NP-RLX) and evaluated their therapeutic potential on measures of AI, AWR and AHR, when intranasally delivered to a preclinical rodent model of chronic AAD and TGF-ß1-stimulated collagen gel contraction from asthma patient-derived myofibroblasts. NP-RLX was preferentially taken-up by CD206+-infiltrating and CD68+-tissue resident alveolar macrophages. Furthermore, NP-RLX ameliorated the chronic AAD-induced AI, pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α), chemokines (CCL2, CCL11) and the pro-fibrotic TGF-ß1/IL-1ß axis on AWR and resulting AHR, as well as human myofibroblast-induced collagen gel contraction, to a similar extent as unconjugated RLX. Hence, NP-RLX represents a novel strategy for treating the central features of asthma.


Assuntos
Nanopartículas , Relaxina , Animais , Modelos Animais de Doenças , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides , Proteínas Recombinantes
8.
Sci Rep ; 10(1): 11713, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678217

RESUMO

The ovalbumin-induced (OVA) chronic allergic airways murine model is a well-established model for investigating pre-clinical therapies for chronic allergic airways diseases, such as asthma. Here, we examined the effects of several experimental compounds with potential anti-asthmatic effects including resveratrol (RV), relaxin (RLN), L-sulforaphane (LSF), valproic acid (VPA), and trichostatin A (TSA) using both a prevention and reversal model of chronic allergic airways disease. We undertook a novel analytical approach using focal plane array (FPA) and synchrotron Fourier-transform infrared (S-FTIR) microspectroscopic techniques to provide new insights into the mechanisms of action of these experimental compounds. Apart from the typical biological effects, S-FTIR microspectroscopy was able to detect changes in nucleic acids and protein acetylation. Further, we validated the reduction in collagen deposition induced by each experimental compound evaluated. Although this has previously been observed with conventional histological methods, the S-FTIR technique has the advantage of allowing identification of the type of collagen present. More generally, our findings highlight the potential utility of S-FTIR and FPA-FTIR imaging techniques in enabling a better mechanistic understanding of novel asthma therapeutics.


Assuntos
Antiasmáticos/administração & dosagem , Asma/tratamento farmacológico , Ácidos Hidroxâmicos/administração & dosagem , Isotiocianatos/administração & dosagem , Relaxina/administração & dosagem , Resveratrol/administração & dosagem , Ácido Valproico/administração & dosagem , Animais , Asma/induzido quimicamente , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sulfóxidos , Síncrotrons , Resultado do Tratamento
10.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120819

RESUMO

Despite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation. Complex carbohydrate and polymer-based coatings have been used, but simpler compounds may provide additional benefits. Herein, we designed and generated super-paramagnetic iron oxide nanoparticles coated with the neutral natural dietary amino acid glycine (GSPIONs), to support non-invasive lung imaging and determined particle biodistribution, as well as understanding the impact of the interaction of these nanoparticles with lung immune cells. These GSPIONs were characterized to be crystalline, colloidally stable, with a size of 12 ± 5 nm and a hydrodynamic diameter of 84.19 ± 18 nm. Carbon, Hydrogen, Nitrogen (CHN) elemental analysis estimated approximately 20.2 × 103 glycine molecules present per nanoparticle. We demonstrated that it is possible to determine the biodistribution of the GSPIONs in the lung using three-dimensional (3D) ultra-short echo time magnetic resonance imaging. The GSPIONs were found to be taken up selectively by alveolar macrophages and neutrophils in the lung. In addition, the GSPIONs did not cause changes to airway resistance or induce inflammatory cytokines. Alveolar macrophages and neutrophils are critical regulators of pulmonary inflammatory diseases, including allergies, infections, asthma and chronic obstructive pulmonary disease (COPD). Therefore, pulmonary Magnetic Resonance (MR) imaging and preferential targeting of these lung resident cells by our nanoparticles offer precise imaging tools, which can be utilized to develop precision targeted radiotherapy as well as diagnostic tools for lung cancer, thereby having the potential to reduce the pulmonary complications of radiation.


Assuntos
Citocinas/metabolismo , Pulmão/diagnóstico por imagem , Macrófagos Alveolares/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neutrófilos/metabolismo , Animais , Feminino , Pulmão/citologia , Pulmão/metabolismo , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
11.
Gut ; 69(5): 841-851, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31409604

RESUMO

OBJECTIVE: We evaluated the influence of the renin-angiotensin system (RAS) on intestinal inflammation and fibrosis. DESIGN: Cultured human colonic myofibroblast proliferation and collagen secretion were assessed following treatment with angiotensin (Ang) II and Ang (1-7), their receptor antagonists candesartan and A779, and the ACE inhibitor captopril. Circulating and intestinal RAS components were evaluated in patients with and without IBD. Disease outcomes in patients with IBD treated with ACE inhibitors and angiotensin receptor blockers (ARBs) were assessed in retrospective studies. RESULTS: Human colonic myofibroblast proliferation was reduced by Ang (1-7) in a dose-dependent manner (p<0.05). Ang II marginally but not significantly increased proliferation, an effect reversed by candesartan (p<0.001). Colonic myofibroblast collagen secretion was reduced by Ang (1-7) (p<0.05) and captopril (p<0.001), and was increased by Ang II (p<0.001). Patients with IBD had higher circulating renin (mean 25.4 vs 18.6 mIU/L, p=0.026) and ACE2:ACE ratio (mean 0.92 vs 0.69, p=0.015) than controls without IBD. RAS gene transcripts and peptides were identified in healthy and diseased bowels. Colonic mucosal Masson's trichrome staining correlated with Ang II (r=0.346, p=0.010) and inversely with ACE2 activity (r=-0.373, p=0.006). Patients with IBD who required surgery (1/37 vs 12/75, p=0.034) and hospitalisation (0/34 vs 8/68, p=0.049) over 2 years were less often treated with ACE inhibitors and ARBs than patients not requiring surgery or hospitalisation. CONCLUSIONS: The RAS mediates fibrosis in human cell cultures, is expressed in the intestine and perturbed in intestinal inflammation, and agents targeting this system are associated with improved disease outcomes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Benzimidazóis/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Tetrazóis/farmacologia , Adulto , Compostos de Bifenilo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Estudos de Coortes , Colo/citologia , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Feminino , Fibrose/tratamento farmacológico , Fibrose/patologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Miofibroblastos/citologia , Estudos Retrospectivos , Sensibilidade e Especificidade
12.
Int J Pharm ; 570: 118654, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31476378

RESUMO

The use of nanoparticles for pulmonary delivery poses challenges such as the presence of anatomical barriers and the loss of bioactive components. Excipients are often used to facilitate delivery. Excipients suitable for nanoparticle delivery are still being explored. Herein we introduce for the first time, spray-dried glycine microparticle-based excipients loaded with nanoparticles of the size range known to be taken up by alveolar macrophages. Using a microfluidic jet spray dryer, we produced glycine microparticles-based excipients which are spherical, uniform, cenospheric (hollow at core), and "coral-like" with average diameter of 60 ±â€¯10 µm, 29 ±â€¯0.8% porosity, and showed their effective loading with glycine coated iron oxide superparamagnetic nanoparticles (GSPIONs). Our loading protocol with nanoparticles further increased microsphere porosity and improved aerodynamic performance unlike the dense, solid commercial excipient, Lactohale200™. This demonstrates a feasible approach for delivery of such nanoparticles in the lung.


Assuntos
Glicina/química , Pulmão/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Células A549 , Linhagem Celular Tumoral , Dextranos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Humanos , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/química , Tamanho da Partícula , Porosidade
13.
Br J Pharmacol ; 176(13): 2195-2208, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883698

RESUMO

BACKGROUND AND PURPOSE: There is growing interest in stem cell-derived exosomes for their therapeutic and regenerative benefits given their manufacturing and regulatory advantages over cell-based therapies. As existing fibrosis impedes the viability and efficacy of stem cell/exosome-based strategies for treating chronic diseases, here we tested the effects of the anti-fibrotic drug, serelaxin, on the therapeutic efficacy of human amnion epithelial cell (AEC)-derived exosomes in experimental lung disease. EXPERIMENTAL APPROACH: Female Balb/c mice were subjected to either the 9.5-week model of ovalbumin and naphthalene (OVA/NA)-induced chronic allergic airway disease (AAD) or 3-week model of bleomycin (BLM)-induced pulmonary fibrosis; then administered increasing concentrations of AEC-exosomes (5 µg or 25µg), with or without serelaxin (0.5mg/kg/day) for 7-days. 1x106 AECs co-administered with serelaxin over the corresponding time-period were included for comparison in both models, as was pirfenidone-treatment of the BLM model. Control groups received saline/corn oil or saline, respectively. KEY RESULTS: Both experimental models presented with significant tissue inflammation, remodelling, fibrosis and airway/lung dysfunction at the time-points studied. While AEC-exosome (5 µg or 25µg)-administration alone demonstrated some benefits in each model, serelaxin was required for AEC-exosomes (25µg) to rapidly normalise chronic AAD-induced airway fibrosis and airway reactivity, and BLM-induced lung inflammation, epithelial damage and subepithelial/basement membrane fibrosis. Combining serelaxin with AEC-exosomes (25µg) also demonstrated broader protection compared to co-administration of serelaxin with 1x106 AECs or pirfenidone. CONCLUSIONS AND IMPLICATIONS: Serelaxin enhanced the therapeutic efficacy of AEC-exosomes in treating basement membrane-induced fibrosis and related airway dysfunction.


Assuntos
Exossomos , Fibrose Pulmonar/terapia , Relaxina/uso terapêutico , Hipersensibilidade Respiratória/terapia , Remodelação das Vias Aéreas/efeitos dos fármacos , Âmnio/citologia , Animais , Modelos Animais de Doenças , Células Epiteliais , Feminino , Humanos , Camundongos Endogâmicos BALB C , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Relaxina/farmacologia , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia
14.
Therap Adv Gastroenterol ; 12: 1756284818822566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719077

RESUMO

BACKGROUND: The intestinal vitamin D receptor (VDR) remains poorly characterized in patients with inflammatory bowel disease (IBD). METHODS: Colonoscopic biopsies and intestinal resection specimens from the terminal ileum, ascending and sigmoid colon, from patients with and without IBD, were analyzed for VDR mRNA quantification by polymerase chain reaction, and protein localization and semi-quantification by immunohistochemistry. The relationship between VDR and intestinal inflammation, serum 25(OH)D and oral vitamin D intake was elicited. RESULTS: A total of 725 biopsies from 20 patients with Crohn's disease (CD), 15 with ulcerative colitis (UC) and 14 non-IBD controls who underwent colonoscopy were studied. VDR gene expression and protein staining intensity was similar across all three groups, and across the intestinal segments. Sigmoid colon VDR mRNA expression inversely correlated with faecal calprotectin (r = -0.64, p = 0.026) and histological score (r = -0.67, p = 0.006) in UC, and histological score (r = -0.58, p = 0.019) in patients with CD. VDR staining intensity was higher in quiescent than diseased segments. No relationship with serum 25(OH)D or oral vitamin D intake was noted. Immunohistochemical staining of 28 intestinal resection specimens from 15 patients (5 each with CD, UC and non-IBD controls) showed diffuse VDR staining in the mucosa, submucosa and circular muscle. CONCLUSIONS: VDR transcript expression and protein staining intensity are inversely related to inflammation in IBD, but unrelated to serum 25(OH)D, and similar to non-IBD controls. Strategies to upregulate intestinal VDR, potentially translating to modulation of disease activity, require investigation.

15.
FASEB J ; 33(5): 6402-6411, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768365

RESUMO

The airway remodeling (AWR) associated with chronic allergic airways disease (AAD)/asthma contributes to irreversible airway obstruction. This study compared and combined the antiremodeling and other effects of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) with the corticosteroid dexamethasone (Dex) in experimental chronic AAD/asthma. Female BALB/c mice subjected to 11 wk of ovalbumin (Ova)-induced chronic AAD were intranasally administered MCA-MSCs (1 × 106 cells/mouse; once weekly on wk 10 and 11), Dex (0.5 mg/ml; once daily for 2 wk), or both combined. MCA-MSC detection and changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were measured at the end of wk 11. Mice with chronic AAD had significant AI, goblet cell metaplasia, epithelial damage/thickening, aberrant TGF-ß1 levels, subepithelial myofibroblast accumulation, airway/lung fibrosis, and AHR (all P < 0.001 vs. healthy controls). MCA-MSCs were detected in the lungs up to 5-7 d postadministration and demonstrated modest anti-inflammatory but striking antifibrotic effects against Ova-induced AAD, effectively decreasing AHR by 70-75% (all P < 0.05 vs. Ova alone). In comparison, Dex predominantly demonstrated anti-inflammatory effects, decreasing AHR by ∼30%. Combining MCA-MSCs with Dex provided equivalent protection to that offered by either therapy alone. MCA-MSCs reduce chronic AAD-induced AWR and AHR to a greater extent than Dex and may act as a suitable adjunct therapy to corticosteroid treatment of asthma.-Royce, S. G., Mao, W., Lim, R., Kelly, K., Samuel, C. S. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid.


Assuntos
Asma , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Asma/imunologia , Asma/patologia , Asma/prevenção & controle , Dexametasona/farmacologia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C
16.
Mol Cell Endocrinol ; 487: 66-74, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772373

RESUMO

The peptide hormone relaxin is well-known for its anti-fibrotic actions in several organs, particularly from numerous studies conducted in animals. Acting through its cognate G protein-coupled receptor, relaxin family peptide receptor 1 (RXFP1), serelaxin (recombinant human relaxin) has been shown to consistently inhibit the excessive extracellular matrix production (fibrosis) that results from the aberrant wound-healing response to tissue injury and/or chronic inflammation, and at multiple levels. Furthermore, it can reduce established scarring by promoting the degradation of aberrant extracellular matrix components. Following on from the review that describes the mechanisms and signaling pathways associated with the extracellular matrix remodeling effects of serelaxin (Ng et al., 2019), this review focuses on newly identified tissue targets of serelaxin therapy in fibrosis, and the limitations associated with (se)relaxin research.


Assuntos
Relaxina/metabolismo , Animais , Colágeno/metabolismo , Eletromiografia , Fibrose , Humanos
17.
Expert Rev Respir Med ; 12(11): 941-955, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30221563

RESUMO

INTRODUCTION: Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease.


Assuntos
Asma/imunologia , Endotoxinas/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Alérgenos/imunologia , Animais , Anti-Inflamatórios/farmacologia , Bactérias/imunologia , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Imunidade Inata , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Células Mieloides/imunologia , Nanopartículas , Neutrófilos/metabolismo , Inibidores de Proteases/farmacologia , Síndrome do Desconforto Respiratório/imunologia , Receptores Toll-Like/metabolismo
18.
Pharmacol Ther ; 187: 61-70, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29447958

RESUMO

The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and ß2-adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Pneumopatias/tratamento farmacológico , Relaxina/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiologia , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Contração Muscular/efeitos dos fármacos , Relaxina/farmacologia
19.
FASEB J ; 31(9): 4168-4178, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28626025

RESUMO

Structural changes known as airway remodeling (AWR) characterize chronic/severe asthma and contribute to lung dysfunction. Thus, we assessed the in vivo efficacy of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) on AWR in a murine model of chronic allergic airways disease (AAD)/asthma. Female Balb/c mice were subjected to a 9-wk model of ovalbumin (Ova)-induced chronic AAD and treated intravenously or intranasally with MCA-MSCs from weeks 9 to 11. Changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were assessed. Ova-injured mice presented with AI, goblet cell metaplasia, epithelial thickening, increased airway TGF-ß1 levels, subepithelial myofibroblast and collagen accumulation, total lung collagen concentration, and AHR (all P < 0.001 vs. uninjured control group). Apart from epithelial thickness, all other parameters measured were significantly, although not totally, decreased by intravenous delivery of MCA-MSCs to Ova-injured mice. In comparison, intranasal delivery of MCA-MSCs to Ova-injured mice significantly decreased all parameters measured (all P < 0.05 vs. Ova group) and, most notably, normalized aberrant airway TGF-ß1 levels, airway/lung fibrosis, and AHR to values measured in uninjured animals. MCA-MSCs also increased collagen-degrading gelatinase levels. Hence, direct delivery of MCA-MSCs offers great therapeutic benefit for the AWR and AHR associated with chronic AAD.-Royce, S. G., Rele, S., Broughton, B. R. S., Kelly, K., Samuel, C. S. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease.


Assuntos
Hipersensibilidade , Células-Tronco Mesenquimais , Fibrose Pulmonar/terapia , Hipersensibilidade Respiratória/terapia , Transplante de Células-Tronco/métodos , Administração Intranasal , Remodelação das Vias Aéreas , Animais , Feminino , Células Caliciformes , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/imunologia
20.
Hell J Nucl Med ; 20 Suppl: 103-113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29324919

RESUMO

Asthma is a chronic respiratory disease characterised by airway inflammation, remodeling and hyperresponsiveness. The ability to replicate these asthma traits in the well-established ovalbumin induced chronic model of allergic airways disease is an important tool for asthma research and preclinical drug development. Here, spectra derived from focal plane array and Synchrotron-Fourier transform infrared maps were used to analyse biochemical changes in lung tissue from an ovalbumin-induced murine chronic allergic airways disease model. Analysis of the chemical maps resulted in distinct clusters and significant changes in the lipid and proteins regions of the spectra between the saline control and diseased lung tissue samples. Overall, the utilisation of conventional histological methodologies and Synchrotron infrared microspectroscopy has the ability to expand the characterisation of murine models of asthma.


Assuntos
Asma/imunologia , Asma/patologia , Ovalbumina/imunologia , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons , Animais , Asma/diagnóstico , Histologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...