Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadn2689, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838141

RESUMO

Organ-on-chip (OOC) systems are revolutionizing tissue engineering by providing dynamic models of tissue structure, organ-level function, and disease phenotypes using human cells. However, nonbiological components of OOC devices often limit the recapitulation of in vivo-like tissue-tissue cross-talk and morphogenesis. Here, we engineered a kidney glomerulus-on-a-chip that recapitulates glomerular morphogenesis and barrier function using a biomimetic ultrathin membrane and human-induced pluripotent stem cells. The resulting chip comprised a proximate epithelial-endothelial tissue interface, which reconstituted the selective molecular filtration function of healthy and diseased kidneys. In addition, fenestrated endothelium was successfully induced from human pluripotent stem cells in an OOC device, through in vivo-like paracrine signaling across the ultrathin membrane. Thus, this device provides a dynamic tissue engineering platform for modeling human kidney-specific morphogenesis and function, enabling mechanistic studies of stem cell differentiation, organ physiology, and pathophysiology.


Assuntos
Rim , Dispositivos Lab-On-A-Chip , Morfogênese , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/citologia , Diferenciação Celular , Membranas Artificiais
2.
J Vis Exp ; (189)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36408985

RESUMO

Chronic kidney disease (CKD) affects 15% of the U.S. adult population, but the establishment of targeted therapies has been limited by the lack of functional models that can accurately predict human biological responses and nephrotoxicity. Advancements in kidney precision medicine could help overcome these limitations. However, previously established in vitro models of the human kidney glomerulus-the primary site for blood filtration and a key target of many diseases and drug toxicities-typically employ heterogeneous cell populations with limited functional characteristics and unmatched genetic backgrounds. These characteristics significantly limit their application for patient-specific disease modeling and therapeutic discovery. This paper presents a protocol that integrates human induced pluripotent stem (iPS) cell-derived glomerular epithelium (podocytes) and vascular endothelium from a single patient to engineer an isogenic and vascularized microfluidic kidney glomerulus chip. The resulting glomerulus chip is comprised of stem cell-derived endothelial and epithelial cell layers that express lineage-specific markers, produce basement membrane proteins, and form a tissue-tissue interface resembling the kidney's glomerular filtration barrier. The engineered glomerulus chip selectively filters molecules and recapitulates drug-induced kidney injury. The ability to reconstitute the structure and function of the kidney glomerulus using isogenic cell types creates the opportunity to model kidney disease with patient specificity and advance the utility of organs-on-chips for kidney precision medicine and related applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nefropatias , Podócitos , Humanos , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Rim , Nefropatias/induzido quimicamente , Nefropatias/metabolismo
3.
Micromachines (Basel) ; 12(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34442589

RESUMO

Progress in understanding kidney disease mechanisms and the development of targeted therapeutics have been limited by the lack of functional in vitro models that can closely recapitulate human physiological responses. Organ Chip (or organ-on-a-chip) microfluidic devices provide unique opportunities to overcome some of these challenges given their ability to model the structure and function of tissues and organs in vitro. Previously established organ chip models typically consist of heterogenous cell populations sourced from multiple donors, limiting their applications in patient-specific disease modeling and personalized medicine. In this study, we engineered a personalized glomerulus chip system reconstituted from human induced pluripotent stem (iPS) cell-derived vascular endothelial cells (ECs) and podocytes from a single patient. Our stem cell-derived kidney glomerulus chip successfully mimics the structure and some essential functions of the glomerular filtration barrier. We further modeled glomerular injury in our tissue chips by administering a clinically relevant dose of the chemotherapy drug Adriamycin. The drug disrupts the structural integrity of the endothelium and the podocyte tissue layers, leading to significant albuminuria as observed in patients with glomerulopathies. We anticipate that the personalized glomerulus chip model established in this report could help advance future studies of kidney disease mechanisms and the discovery of personalized therapies. Given the remarkable ability of human iPS cells to differentiate into almost any cell type, this work also provides a blueprint for the establishment of more personalized organ chip and 'body-on-a-chip' models in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...