Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 119(20): 4625-35, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22378845

RESUMO

The constitutively active JAK2 V617F mutant is the major determinant of human myeloproliferative neoplasms (MPNs). We show that coexpression of murine JAK2 V617F and the murine thrombopoietin (Tpo) receptor (TpoR, c-MPL) in hematopoietic cell lines or heterozygous knock-in of JAK2 V617F in mice leads to down-modulation of TpoR levels. Enhanced TpoR ubiquitinylation, proteasomal degradation, reduced recycling, and maturation are induced by the constitutive JAK2 V617F activity. These effects can be prevented in cell lines by JAK2 and proteasome inhibitors. Restoration of TpoR levels by inhibitors could be detected in platelets from JAK2 inhibitor-treated myelofibrosis patients that express the JAK2 V617F mutant, and in platelets from JAK2 V617F knock-in mice that were treated in vivo with JAK2 or proteasome inhibitors. In addition, we show that Tpo can induce both proliferative and antiproliferative effects via TpoR at low and high JAK2 activation levels, respectively, or on expression of JAK2 V617F. The antiproliferative signaling and receptor down-modulation by JAK2 V617F were dependent on signaling via TpoR cytosolic tyrosine 626. We propose that selection against TpoR antiproliferative signaling occurs by TpoR down-modulation and that restoration of down-modulated TpoR levels could become a biomarker for the treatment of MPNs.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/fisiologia , Inibidores de Proteassoma , Inibidores de Proteínas Quinases/farmacologia , Receptores de Trombopoetina/genética , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto/fisiologia , Fenilalanina/genética , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Receptores de Trombopoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Valina/genética
2.
J Biol Chem ; 284(11): 6773-81, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19139102

RESUMO

Activating mutations in JAK1 have been reported in acute lymphoblastic leukemias, but little is known about the mechanisms involved in their constitutive activation. Here, we studied the ability of JAK1 V658F and A634D to activate the Janus kinase (JAK)/STAT pathway upon ectopic expression in HEK293 cells alone or together with the other components of the interleukin-9 receptor complex (IL-9Ralpha, gammac, and JAK3). Expression of JAK1 mutants alone failed to trigger STAT activation, but co-expression of the IL-9Ralpha chain promoted JAK1 mutant phosphorylation and STAT activation. Mutation of the FERM domain of JAK1, which is critical for cytokine receptor association, or of the single tyrosine of IL-9Ralpha involved in STAT recruitment abolished this activity, indicating that JAK1 mutants need to associate with a functional IL-9Ralpha to activate STAT factors. Several lines of evidence indicated that IL-9Ralpha homodimerization was involved in this process. IL-9Ralpha variants with mutations of the JAK-interacting BOX1 region not only failed to promote JAK1 activation but also acted as dominant negative forms reverting the effect of wild-type IL-9Ralpha. Coimmunoprecipitation experiments also showed the formation of IL-9Ralpha homodimers. Interestingly, STAT activation was partially inhibited by expression of gammac, suggesting that overlapping residues are involved in IL-9Ralpha homodimerization and IL-9Ralpha/gammac heterodimerization. Co-expression of wild-type JAK3 partially reverted the inhibition by gammac, indicating that JAK3 cooperates with JAK1 mutants within the IL-9 receptor complex. Similar results were observed with IL-2Rbeta. Taken together, our results show that IL-9Ralpha and IL-2Rbeta homodimers efficiently mediate constitutive activation of ALL-associated JAK1 mutants.


Assuntos
Janus Quinase 1/metabolismo , Mutação de Sentido Incorreto , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Interleucina-9/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Dimerização , Ativação Enzimática/genética , Humanos , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/metabolismo , Janus Quinase 1/genética , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Camundongos , Fosforilação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estrutura Terciária de Proteína/genética , Receptores de Interleucina-9/genética , Fatores de Transcrição STAT/genética
3.
J Biol Chem ; 283(48): 33569-77, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18829468

RESUMO

Signaling via interleukin-2 (IL-2) and interleukin-9 receptors (IL-2R and IL-9R) involves heteromeric interactions between specific interleukin receptor subunits, which bind Janus kinase 1 (JAK1) and the JAK3 binding common gamma chain (gamma c). The potential existence and roles of homomeric and heteromeric complexes before ligand binding and their modulation by ligand and JAK3 are unclear. Using computerized antibody-mediated immunofluorescence co-patching of epitope-tagged receptors at the surface of live cells, we demonstrate that IL-2Rbeta, IL-9Ralpha, and gamma c each display a significant fraction of ligand-independent homomeric complexes (24-28% co-patching), whereas control co-patching levels with unrelated receptors are very low (7%). Heteromeric complex formation of IL2-Rbeta or IL-9Ralpha with gamma c is also observed in the absence of ligand (15-30%). Ligand binding increases this hetero-oligomerization 2-fold but does not affect homo-oligomerization. Co-expression of IL-2Ralpha does not affect the hetero-oligomerization of IL-2Rbeta and gamma c. Recruitment of gamma c into heterocomplexes is partly at the expense of its homo-oligomerization, suggesting that a functional role of the latter may be to keep the receptors inactive in the absence of ligand. At the same time, the preformed complexes between gamma c and IL-2Rbeta or IL-9Ralpha promote signaling by the JAK3 A572V mutant without ligand, supporting a pathophysiological role for the constitutive oligomerization in triggering ligand-independent activation of JAK3 (and perhaps other JAK mutants) mutants identified in several human cancers.


Assuntos
Subunidade gama Comum de Receptores de Interleucina/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Janus Quinase 3/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Receptores de Interleucina-9/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/genética , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 3/genética , Ligantes , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Receptores de Interleucina-9/genética , Transdução de Sinais/genética
4.
Blood ; 111(7): 3751-9, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18216297

RESUMO

The V617F activating point mutation in Jak2 is associated with a proportion of myeloproliferative disorders. In normal hematopoietic cells, Jak2 signals only when associated with a growth factor receptor, such as the erythropoietin receptor (EpoR). We sought to identify the molecular requirements for activation of Jak2V617F by introducing a point mutation in the FERM domain (Y114A), required for receptor binding. Whereas BaF3.EpoR cells are readily transformed by Jak2V617F to Epo independence, we found that the addition of the FERM domain mutation blocked transformation and the induction of reactive oxygen species. Further, while cells expressing Jak2V617F had constitutive activation of STAT5, cells expressing Jak2V617F/Y114A did not, suggesting that signaling is defective at a very proximal level. In addition, expression of the Myc and Pim proto-oncogenes by Jak2V617F was found to be FERM domain dependent. An inducible constitutively active STAT5 mutant expressed in BaF3 cells was sufficient to induce Myc and Pim. Finally, the FERM domain in Jak2V617F was also required for abnormal hematopoiesis in transduced primary murine fetal liver cells. Overall, our results suggest that constitutive activation of Jak2 requires an intact FERM domain for a transforming phenotype, and is necessary for activation of the major target of Jak2, STAT5.


Assuntos
Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2/biossíntese , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-pim-1/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Ativação Enzimática/genética , Eritropoetina/genética , Eritropoetina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Hematopoese Extramedular/genética , Humanos , Janus Quinase 2/genética , Fígado/embriologia , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Transdução Genética
5.
J Biol Chem ; 280(29): 27251-61, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15899890

RESUMO

The thrombopoietin receptor (TpoR) regulates hematopoietic stem cell renewal, megakaryocyte differentiation, and platelet formation. TpoR signals by activating Janus kinases JAK2 and Tyk2. Here we show that, in addition to signaling downstream from the activated TpoR, JAK2 and Tyk2 strongly promote cell surface localization and enhance total protein levels of the TpoR. This effect is caused by stabilization of the mature endoglycosidase H-resistant form of the receptor. Confocal microscopy indicates that TpoR colocalizes partially with recycling transferrin in Ba/F3 cells. The interaction with JAK2 or Tyk2 appears to protect the receptor from proteasome degradation. Sequences encompassing Box1 and Box2 regions of the receptor cytosolic domain and an intact JAK2 or Tyk2 FERM domain are required for these effects. We discuss the relevance of our results to the reported defects of TpoR processing in myeloproliferative diseases and to the mechanisms of Tpo signaling and clearance via the TpoR.


Assuntos
Proteínas Oncogênicas/metabolismo , Proteínas Tirosina Quinases/fisiologia , Receptores de Citocinas/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Janus Quinase 1 , Janus Quinase 2 , Janus Quinase 3 , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Oncogênicas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Receptores de Citocinas/química , Receptores de Trombopoetina , TYK2 Quinase , Transfecção , Transferrina/metabolismo , Regulação para Cima
6.
DNA Cell Biol ; 23(6): 355-65, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15231069

RESUMO

Stable expression of cloned genes in mammalian cells has been achieved in the past by retroviral transduction using bicistronic retroviral vectors. In these vectors, the use of an Internal Ribosome Entry Site (IRES) allows simultaneous expression of a protein of interest and a fluorescence marker. However, traditional cDNA cloning in these vectors is often difficult. Here we report the construction of a high-throughput retroviral vector using the Invitrogen "Gateway" Cloning system. The Gateway recombination sequences (attR) flanking the ccdB and chloramphenicol resistance genes were incorporated at the 5' of the IRES of pMX-IRES-GFP, -CD2, or -CD4 vectors. Through recombination, these vectors can acquire cDNAs coding for genes of interest, which will result in simultaneous expression of the recombined gene and the marker protein. We constructed Gateway bicistronic vectors coding for the erythropoietin receptor (EpoR) and GFP, CD4, or CD2. Epo-dependent proliferation assays and analysis of Jak2-dependent EpoR cell-surface expression showed that these vectors were able to function indistinguishable from the original pMX-EpoR-IRES-GFP. The expression levels of the genes cloned upstream the IRES were proportional to the levels of expression of GFP, which was cloned downstream of the IRES. We used the same approach and generated Ba/F3 cells that overexpress STAT5a, STAT5b, or a constitutively active form of STAT5. Overexpression of STAT5 lead to a significant effect on the intrinsic adherence to plastic of these cells, but did not change their proliferative responses to cytokines. We discuss possible applications of the new vectors for cell signaling and expression cloning.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas do Leite , Proteínas Proto-Oncogênicas , Receptores da Eritropoetina/metabolismo , Retroviridae/metabolismo , Transativadores/metabolismo , Transdução Genética/métodos , Animais , Western Blotting , Adesão Celular/fisiologia , Células Cultivadas , Primers do DNA , Proteínas de Ligação a DNA/genética , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde , Janus Quinase 2 , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas Tirosina Quinases/metabolismo , Receptores da Eritropoetina/genética , Retroviridae/genética , Ribossomos/genética , Fator de Transcrição STAT5 , Transativadores/genética
7.
Mol Cell ; 12(5): 1239-50, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14636581

RESUMO

Binding of erythropoietin to the erythropoietin receptor (EpoR) extracellular domain orients the transmembrane (TM) and cytosolic regions of the receptor dimer into an unknown activated conformation. By replacing the EpoR extracellular domain with a dimeric coiled coil, we engineered TM EpoR fusion proteins where the helical TM domains were constrained into seven possible relative orientations. We identify one dimeric TM conformation that imparts full activity to the cytosolic domain of the receptor and signals via JAK2, STAT proteins, and MAP kinase, one partially active orientation that preferentially activates MAP kinase, and one conformation corresponding to the inactive receptor. The active and inactive conformations were independently identified by computational searches for low-energy TM dimeric structures. We propose a specific EpoR-activated interface and suggest its use for structural and signaling studies.


Assuntos
Proteínas do Leite , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas , Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Dimerização , Ativação Enzimática , Células Precursoras Eritroides/metabolismo , Eritropoetina/metabolismo , Janus Quinase 2 , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/metabolismo , Receptores da Eritropoetina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT3 , Fator de Transcrição STAT5 , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Transcrição Gênica , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...