Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253467

RESUMO

Cutaneous leishmaniasis (CL) contributes significantly to the global burden of neglected tropical diseases, with 12 million people currently infected with Leishmania parasites. CL encompasses a range of disease manifestations, from self-healing skin lesions to permanent disfigurations. Currently there is no vaccine available, and many patients are refractory to treatment, emphasizing the need for new therapeutic targets. Previous work demonstrated macrophage HIF-α-mediated lymphangiogenesis is necessary to achieve efficient wound resolution during murine L. major infection. Here, we investigate the role of macrophage HIF-α signaling independent of lymphangiogenesis. We sought to determine the relative contributions of the parasite and the host-mediated inflammation in the lesional microenvironment to myeloid HIF-α signaling. Because HIF-α activation can be detected in infected and bystander macrophages in leishmanial lesions, we hypothesize it is the host's inflammatory response and microenvironment, rather than the parasite, that triggers HIF-α activation. To address this, macrophages from mice with intact HIF-α signaling (LysM Cre ARNT f/+ ) or mice with deleted HIF-α signaling (LysM Cre ARNT f/f ) were subjected to RNASequencing after L. major infection and under pro-inflammatory stimulus. We report that L. major infection alone is enough to induce some minor HIF-α-dependent transcriptomic changes, while infection with L. major in combincation with pro-inflammatory stimuli induces numerous transcriptomic changes that are both dependent and independent of HIF-α signaling. Additionally, by coupling transcriptomic analysis with several pathway analyses, we found HIF-α suppresses pathways involved in protein translation during L. major infection in a pro-inflammatory environment. Together these findings show L. major induces a HIF-α-dependent transcriptomic program, but HIF-α only suppresses protein translation in a pro-inflammatory environment. Thus, this work indicates the host inflammatory response, rather than the parasite, largely contributes to myeloid HIF-α signaling during Leishmania infection.

2.
bioRxiv ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39229173

RESUMO

An increasing number of treatment failures with current pharmaceutics, as well as a lack of a vaccine, demonstrates the need to develop new treatment options for leishmaniasis. Herein, we describe the synthesis and in vitro analysis of 24 disquaramide compounds targeting the Leishmania major parasite. Of the compounds that were evaluated, six of them ( 13 , 19 , 20 , 22 , 24 , and 26 ) were capable of significantly decreasing the number of parasites by up to 42% compared to the control by day four. This demonstrates that disquaramides either impair parasite replication or have leishmancidal effects. Additionally, none of the disquaramide compounds tested displayed host cell cytotoxicity. These experiments provide evidence that disquaramides have the potential to be effective anti-leishmanial therapeutics.

3.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39211126

RESUMO

Cutaneous leishmaniasis (CL) is a significant public health problem leading to permanently disfiguring skin lesions caused by Leishmania parasites. Lesion severity stems from an excessive host inflammatory response that prevents healing. Here, we characterized the transcriptional and translational responses of lymphatic endothelial cells (LECs) during murine CL using historical single-cell RNA sequencing data combined with flow cytometry and in vivo puromycin incorporation to assess translational activity. We identified upregulation of antigen presentation pathways including MHC-I, MHC-II, and immunoproteasome transcripts in dermal LECs from Leishmania major -infected mice compared to naive controls. LECs also exhibited increased expression of guanylate binding proteins and interferon-inducible genes, indicative of immune activation. Moreover, our findings demonstrate that LECs in leishmanial lesions displayed heightened translational activity relative to LECs from uninflamed ears, and LEC translational activity was highest in activated LECs. Furthermore, LEC translational activity exceeded that of other cell types within the lesion microenvironment. Validating the transcriptomic data, LECs in lesions expressed elevated MHC-II and programmed death-ligand 1 (PDL-1), supporting their potential role in antigen presentation. Functional assays using DQ-OVA confirmed that LECs from leishmanial lesions efficiently uptake and process antigens, highlighting their capability as antigen presenting cells in the inflamed dermal microenvironment. Overall, our study reveals the activation status of LECs in leishmanial lesions, shedding light on their potential role in shaping local immunity and inflammation in a variety of skin diseases.

4.
J Parasitol ; 109(3): 200-210, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270767

RESUMO

Cutaneous leishmaniasis is caused by infection with the protozoan parasite Leishmania, which resides intracellularly in dermal macrophages (Mø), producing lesions. The skin lesions are characterized by proinflammatory cytokines and growth factors as well as inflammatory hypoxia, creating a stressful microenvironment for Mø. Of importance, not all Mø in lesions harbor parasites. To distinguish the influence of the parasite from the inflammatory microenvironment after Leishmania major (LM) infection on the Mø, we performed single-cell RNA sequencing and compared Mø associated with LM transcripts (or 'infected' Mø) with Mø not associated with LM transcripts (or 'bystander' Mø) within the lesions. Our findings show coordinated lysosomal expression and regulation signaling with increased cathepsin and H+-ATPase transcripts are upregulated in infected compared with bystander Mø. Additionally, eukaryotic initiation factor 2 (EIF2) signaling is downregulated in infected compared with bystander Mø, which includes many small and large ribosomal subunit (Rps and Rpl) transcripts being decreased in Mø harboring parasites. Furthermore, we also find EIF2 signaling including EIF, Rps, and Rpl transcripts being downregulated in bystander Mø compared with Mø from naïve skin. These data suggest that both the parasite and the inflammatory host microenvironment affect the transcription of ribosomal machinery in lesional Mø, thereby potentially affecting the ability of these cells to perform translation, protein synthesis, and thus function. Altogether, these results suggest that both the parasite and host inflammatory microenvironment independently drive transcriptional remodeling in Mø during LM infection in vivo.


Assuntos
Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Leishmania/metabolismo , Macrófagos/metabolismo , Pele/parasitologia
5.
PLoS Negl Trop Dis ; 16(7): e0010518, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789215

RESUMO

Leishmania parasites cause cutaneous leishmaniasis (CL), a disease characterized by disfiguring, ulcerative skin lesions. Both parasite and host gene expression following infection with various Leishmania species has been investigated in vitro, but global transcriptional analysis following L. major infection in vivo is lacking. Thus, we conducted a comprehensive transcriptomic profiling study combining bulk RNA sequencing (RNA-Seq) and single-cell RNA sequencing (scRNA-Seq) to identify global changes in gene expression in vivo following L. major infection. Bulk RNA-Seq analysis revealed that host immune response pathways like the antigen processing and presentation pathway were significantly enriched amongst differentially expressed genes (DEGs) upon infection, while ribosomal pathways were significantly downregulated in infected mice compared to naive controls. scRNA-Seq analyses revealed cellular heterogeneity including distinct resident and recruited cell types in the skin following murine L. major infection. Within the individual immune cell types, several DEGs indicative of many interferon induced GTPases and antigen presentation molecules were significantly enhanced in the infected ears including macrophages, resident macrophages, and inflammatory monocytes. Ingenuity Pathway Analysis of scRNA-Seq data indicated the antigen presentation pathway was increased with infection, while EIF2 signaling is the top downregulated pathway followed by eIF4/p70S6k and mTOR signaling in multiple cell types including macrophages, blood and lymphatic endothelial cells. Altogether, this transcriptomic profile highlights known recruitment of myeloid cells to lesions and recognizes a potential role for EIF2 signaling in murine L. major infection in vivo.


Assuntos
Leishmania major , Animais , Células Endoteliais , Fator de Iniciação 2 em Eucariotos , Perfilação da Expressão Gênica , Leishmania major/genética , Camundongos , Transcriptoma
7.
Pathogens ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959539

RESUMO

Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.

8.
Infect Immun ; 89(8): e0012421, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031127

RESUMO

Vascular remodeling is a phenomenon seen in the cutaneous lesions formed during infection with Leishmania parasites. Within the lesion, Leishmania major infection leads to the infiltration of inflammatory cells, including macrophages, and is associated with hypoxic conditions and lymphangiogenesis in the local site. This low-oxygen environment is concomitant with the expression of hypoxic inducible factors (HIFs), which initiate the expression of vascular endothelial growth factor-A (VEGF-A) in macrophages during the infection. Here, we found that macrophage hypoxia is elevated in the skin, and the HIF target Vegfa is preferentially expressed at the site of infection. Further, transcripts indicative of both HIF-1α and HIF-2α activation were increased at the site of infection. Given that HIF mediates VEGF-A and that VEGF-A/VEGFR-2 signaling induces lymphangiogenesis, we wanted to investigate the link between myeloid HIF activation and lymphangiogenesis during L. major infection. We show that myeloid aryl hydrocarbon receptor nuclear translocator (ARNT)/HIF/VEGF-A signaling promotes lymphangiogenesis (the generation of newly formed vessels within the local lymphatic network), which helps resolve the lesion by draining away inflammatory cells and fluid. Concomitant with impaired lymphangiogenesis, we find the deletion of myeloid ARNT/HIF signaling leads to an exacerbated inflammatory response associated with a heightened CD4+ Th1 immune response following L. major infection. Altogether, our data suggest that VEGF-A-mediated lymphangiogenesis occurs through myeloid ARNT/HIF activation following Leishmania major infection and this process is critical in limiting immunopathology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Leishmania major/fisiologia , Leishmaniose Cutânea/etiologia , Leishmaniose Cutânea/metabolismo , Linfangiogênese/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leishmaniose Cutânea/patologia
9.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451620

RESUMO

Cutaneous leishmaniasis is characterized by vascular remodeling. Following infection with Leishmania parasites, the vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway mediates lymphangiogenesis, which is critical for lesion resolution. Therefore, we investigated the cellular and molecular mediators involved in VEGF-A/VEGFR-2 signaling using a murine model of infection. We found that macrophages are the predominant cell type expressing VEGF-A during Leishmania major infection. Given that Leishmania parasites activate hypoxia-inducible factor 1α (HIF-1α) and this transcription factor can drive VEGF-A expression, we analyzed the expression of HIF-1α during infection. We showed that macrophages were also the major cell type expressing HIF-1α during infection and that infection-induced VEGF-A production is mediated by ARNT/HIF activation. Furthermore, mice deficient in myeloid ARNT/HIF signaling exhibited larger lesions without differences in parasite numbers. These data show that L. major infection induces macrophage VEGF-A production in an ARNT/HIF-dependent manner and suggest that ARNT/HIF signaling may limit inflammation by promoting VEGF-A production and, thus, lymphangiogenesis during infection.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leishmaniose Cutânea/metabolismo , Macrófagos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Células Cultivadas , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leishmania major , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Pele/metabolismo , Pele/parasitologia , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA