Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(33): 11089-11097, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34522306

RESUMO

Triple negative breast cancer (TNBC) is one of the most malignant subtypes of breast cancer. Here, we report the construction of graphene nanoribbon (GNR)-based supramolecular ensembles with dual-receptor (mannose and αvß3 integrin receptors) targeting function, denoted as GNR-Man/PRGD, for targeted photothermal treatment (PTT) of TNBC. The GNR-Man/PRGD ensembles were constructed through the solution-based self-assembly of mannose-grafted GNRs (GNR-Man) with a pyrene-tagged αvß3 integrin ligand (PRGD). Enhanced PTT efficacies were achieved both in vitro and in vivo compared to that of the non-targeting equivalents. Tumor-bearing live mice were administered (tail vein) with GNR-Man/PRGD and then each mice group was subjected to PTT. Remarkably, GNR-Man/PRGD induced complete ablation of the solid tumors, and no tumor regrowth was observed over a period of 15 days. This study demonstrates a new and promising platform for the development of photothermal nanomaterials for targeted tumor therapy.

2.
J Med Chem ; 63(21): 12748-12772, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991173

RESUMO

Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound 42 is a highly potent and selective FXR agonist, along with good pharmacokinetic profiles, high liver distribution, and preferable in vivo efficacy, indicating that it is a potential candidate for the treatment of NASH or other FXR-dependent diseases.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Sítios de Ligação , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/metabolismo , Ácido Quenodesoxicólico/farmacocinética , Ácido Quenodesoxicólico/uso terapêutico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 28(17): 115639, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773090

RESUMO

Histone deacetylases (HDACs) have been found to be biomarkers of cancers and the corresponding inhibitors have attracted much attention these years. Herein we reported a near-infrared fluorescent HDAC inhibitor based on vorinostat (SAHA) and a NIR fluorophore. This newly designed inhibitor showed similar inhibitory activity to SAHA against three HDAC isoforms (HDAC1, 3, 6). The western blot assay showed significant difference in compared with the negative group. When used as probe for further kinematic imaging, Probe 1 showed enhanced retention in tumor cells and the potential of HDAC inhibitors in drug delivery was firstly brought out. The cytotoxicity assay showed Probe 1 had some anti-proliferation activities with corresponding IC50 values of 9.20 ± 0.96 µM on Hela cells and 5.91 ± 0.57 µM on MDA-MB-231 cells. These results indicated that Probe 1 could be used as a potential NIR fluorescent in the study of HDAC inhibitors and lead compound for the development of visible drugs.


Assuntos
Desenho de Fármacos , Corantes Fluorescentes/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Microscopia de Fluorescência , Vorinostat/química
4.
Environ Pollut ; 261: 114039, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220747

RESUMO

Environmentally persistent free radicals (EPFRs) are easily generated in the combustion processes of municipal solid waste (MSW) and can cause adverse effects on human health. This study focuses on understanding the toxicity of EPFR particles (ZnO/MCB containing EPFRs) to human bronchial epithelial cell lines BEAS-2B and 16HBE, murine macrophages Raw264.7, and the lung of BALB/c mice after a short exposure (7 days). Exposure of BEAS-2B, 16HBE, and Raw264.7 cells to ZnO/MCB particles significantly increased the reactive oxygen species (ROS) production and perturbed levels of intracellular redox conditions (decreased the intracellular GSH level and the activity of cytosolic SOD, and stimulated oxidative stress related proteins such as HO-1 and Nrf2). EPFR particles decreased the mitochondrial membrane potential (MMP) and induced cell apoptosis, including the activation of Caspase-3, Bax, and Bcl-2 apoptotic signalling pathways. A signature inflammatory condition was observed in both cell models and the mouse model for lung lesions. Our data suggest that EPFRs in particles have greater toxicity to lung cells and tissues that are potential health hazards to human lung.


Assuntos
Óxido de Zinco , Animais , Apoptose , Radicais Livres , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Espécies Reativas de Oxigênio
5.
Angew Chem Int Ed Engl ; 57(13): 3366-3371, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29397013

RESUMO

Structurally well-defined graphene nanoribbons (GNRs) have attracted great interest because of their unique optical, electronic, and magnetic properties. However, strong π-π interactions within GNRs result in poor liquid-phase dispersibility, which impedes further investigation of these materials in numerous research areas, including supramolecular self-assembly. Structurally defined GNRs were synthesized by a bottom-up strategy, involving grafting of hydrophilic poly(ethylene oxide) (PEO) chains of different lengths (GNR-PEO). PEO grafting of 42-51 % percent produces GNR-PEO materials with excellent dispersibility in water with high GNR concentrations of up to 0.5 mg mL-1 . The "rod-coil" brush-like architecture of GNR-PEO resulted in 1D hierarchical self-assembly behavior in the aqueous phase, leading to the formation of ultralong nanobelts, or spring-like helices, with tunable mean diameters and pitches. In aqueous dispersions the superstructures absorbed in the near-infrared range, which enabled highly efficient conversion of photon energy into thermal energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA