Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Skin Res Technol ; 28(2): 280-290, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34935201

RESUMO

BACKGROUND: Tactile perception is an essential function of skin. As this research involves many fields, such as skin friction, psychology, and neuroscience, the achievement tactile perception is scattered in various fields with different research methods. Therefore, it is necessary to study the whole tactile loop in a multimodal way, synchronizing all tactile information. MATERIALS AND METHODS: To measure information from touch to haptics, we developed a specially designed measuring platform connecting to an electroencephalogram (EEG) recording system. Sandpapers with different roughness were used as samples. First, the surface properties were measured in tribological experiments. Second, psychophysical experiments were conducted to assess the volunteers' cognition of samples' roughness. Third, the mechanical parameters and EEG were measured at the same time during fingertip sliding on samples. Then, the data of all four tactile elements were processed and analyzed separately. The characteristic features were extracted from those data in the time-frequency domain. Furthermore, the correlation coefficient was calculated in the pairwise comparison of each element to evaluate the feasibility of the multimodal method in the study of tactile perception. RESULTS: The 600-mesh sandpaper has the largest Ra, Rz, Rsm, and particle size. The normal load, friction force, spectral centroid, and α- and ß-wave energy ratios of EEG at chosen electrodes have significant differences and correlations between 3000- and 600-mesh sandpaper in general. CONCLUSION: This multimodal method could be used in the study of tactile perception, which is a comprehensive way to observe the whole tactile loop from multiple perspectives.


Assuntos
Percepção do Tato , Dedos , Fricção , Humanos , Pele , Tato
2.
Open Biomed Eng J ; 1: 1-3, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-19662120

RESUMO

The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.

3.
ASAIO J ; 51(6): 736-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16340359

RESUMO

To provide better anatomical fit and physiologic adaptation, three aortic valvo-pumps with different dimensions were developed. Each pump has a rotor with an impeller and drive magnets and a stator consisting of a motor coil with iron core and an outflow guide vane. The devices had outer diameters of 21 mm, 23 mm, and 25 mm, respectively, and weighted 27 g, 31 g, and 40 g, respectively. Laboratory testing demonstrated that the rotating speed for maintaining a diastolic pressure of 80 mm Hg at zero flow rate should be 17500 rpm, 15000 rpm, and 12500 rpm, respectively; the largest flow at these same speeds will be 5 l/min, 7 l/min, and 10 l/min, respectively, with approximately 50 mm Hg pressure head increase. Therefore, these three pumps may meet the hemodynamic requirements of patients with body weights of 40-60 kg, 60-80 kg, and 80-100 kg. The first in vivo trial exhibited that the 25 mm valvo-pump can be sewn onto the aortic valve annulus of a 80 kg body weight pig without harm to adjacent organ functions. The devices occupy no additional anatomic space and deliver the blood directly from ventricle to the aorta, thus producing less physiologic disturbance to the natural circulation. Neither connecting conduits nor bypass circuits are necessary, thus eliminating the most dangerous sites of thrombosis in traditional left ventricular assist devices.


Assuntos
Coração Auxiliar , Animais , Valva Aórtica/cirurgia , Engenharia Biomédica , Humanos , Desenho de Prótese , Suínos
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 29(4): 238-40, 2005 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16268344

RESUMO

Since 1995, four different types of artificial heart pumps and artificial valvo-pumps have been developed in Jiangsu University of China. Three types of heart pumps and valvo-pumps have been applied in animal experiments in University Texas, Medical Branch, USA and in Zhenjiang No.1 People's Hospital of China. The recently-developed UJS-IV pump is a totally implantable trans-ventricular and cross-valvular pump for emergercy treatments.


Assuntos
Próteses Valvulares Cardíacas , Coração Artificial , Desenho de Equipamento , Coração Auxiliar
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 20(3): 534-6, 2003 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-14565033

RESUMO

For long-term application of the rotary pumps, it is necessary to solve the problems of bearing wear and thrombosis along the bearing. Currently, many investigators choose the magnetic bearing to realize zero-friction and no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. We tried and found that it is difficult to apply a magnetic bearing to rotary pump without disturbing its simplicity, reliability and implantable; therefore, we have developed a much simpler and much more creative approach to achieving the same results. Instead of the sliding bearing, a rolling bearing has been devised for the pump; its friction is about 1/15 of the sliding bearing. Furthermore, a wear-proof material of ultra-high-molecular weight polythene has been adopted in making the rollers, their anti-wear property in 8 times better than that of metal. Thereby, the service life of the bearing has extended to several years. For preventing the thrombus formation along the bearing, the impeller reciprocation axially as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is a result of the effects of a magnetic force between the motor rotor and stator, and a hydraulic force between the blood flow and the impeller. Similar to piston pump, the oscillating impeller can make the blood in and out of the bearing, resulting in wash-out once a circle. This is obviously beneficial to preventing thrombosis along the bearing and in the pump. The endurance tests with saline of this novel pump demonstrated a durability of the device. It promises to be able to assist the circulation of the patients permanently and to be able to replace the heart transplantation in the future.


Assuntos
Coração Auxiliar , Magnetismo/instrumentação , Trombose/prevenção & controle , Desenho de Prótese
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 20(4): 605-7, 2003 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-14716856

RESUMO

To evaluate the effect of impeller design on pump hemolysis, five impellers with different number of vanes or different vane angles were manufactured and tested in one pump for hemolysis comparison. The impellers are made to have the same dimension and same logarithmic spiral vane from which coincide with the stream surfaces in the pump, according to the analytical and three-dimensional design method developed by the authors. Consequently, an impeller with 6 vanes and 30 degrees vane angle has the lowest hemolysis index. This result agrees with the theoretical analyses of other investigators searching optimal number of vanes and vane angle to achieve the highest efficiency of the pump.


Assuntos
Coração Auxiliar , Coração Auxiliar/efeitos adversos , Hemólise , Humanos , Técnicas In Vitro , Desenho de Prótese
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 19(4): 593-5, 2002 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-12561356

RESUMO

Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.


Assuntos
Coração Auxiliar , Magnetismo/instrumentação , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA