Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 14(5): 1181-1194, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26832399

RESUMO

Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Linhagem da Célula/genética , Biologia Computacional , Mesoderma/metabolismo , Camundongos , Dados de Sequência Molecular , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo
2.
Development ; 142(24): 4205-16, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26511924

RESUMO

Intracellular transcriptional regulators and extracellular signaling pathways together regulate the allocation of cell fates during development, but how their molecular activities are integrated to establish the correct proportions of cells with particular fates is not known. Here we study this question in the context of the decision between the epiblast (Epi) and the primitive endoderm (PrE) fate that occurs in the mammalian preimplantation embryo. Using an embryonic stem cell (ESC) model, we discover two successive functions of FGF/MAPK signaling in this decision. First, the pathway needs to be inhibited to make the PrE-like gene expression program accessible for activation by GATA transcription factors in ESCs. In a second step, MAPK signaling levels determine the threshold concentration of GATA factors required for PrE-like differentiation, and thereby control the proportion of cells differentiating along this lineage. Our findings can be explained by a simple mutual repression circuit modulated by FGF/MAPK signaling. This might be a general network architecture to integrate the activity of signal transduction pathways and transcriptional regulators, and serve to balance proportions of cell fates in several contexts.


Assuntos
Diferenciação Celular , Linhagem da Célula , Fatores de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Endoderma/citologia , Endoderma/metabolismo , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Modelos Biológicos , Proteína Vermelha Fluorescente
3.
PLoS Biol ; 13(3): e1002111, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25786211

RESUMO

Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle-dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of ß-cells in vitro.


Assuntos
Células Acinares/citologia , Ciclo Celular/genética , Linhagem da Célula/genética , Células Secretoras de Insulina/citologia , Células-Tronco/citologia , Células Acinares/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proliferação de Células , Rastreamento de Células , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Processamento de Imagem Assistida por Computador , Células Secretoras de Insulina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organogênese/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Técnicas de Cultura de Tecidos , Transativadores/genética , Transativadores/metabolismo , Proteína Vermelha Fluorescente
4.
Mol Syst Biol ; 11(1): 792, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716053

RESUMO

During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Retina/citologia , Vertebrados/genética , Animais , Diferenciação Celular , Divisão Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Camundongos , Modelos Teóricos , Vertebrados/embriologia
5.
Development ; 141(22): 4243-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371361

RESUMO

The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/ß-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation.


Assuntos
Linhagem da Célula/fisiologia , Sistema Nervoso Central/embriologia , Indução Embrionária/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Mesoderma/embriologia , Morfogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Técnicas de Cultura de Células , Citometria de Fluxo , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Célula Única , Imagem com Lapso de Tempo
6.
BMC Biol ; 12: 63, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25115237

RESUMO

BACKGROUND: The formation of the primitive streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic stem cells (ESCs) provide a good system for understanding the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both nodal/TGFßR and Wnt/ß-catenin signalling pathways specify cells to adopt a primitive-streak-like fate and direct them to undertake an epithelial-to-mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear to what extent events in the embryo are able to be reproduced in culture. RESULTS: Here, we combine flow cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs towards a primitive streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of brachyury, whose expression is dependent on the EMT and ß-catenin activity. CONCLUSIONS: As a consequence of our analysis, we propose that a major output of brachyury expression is in controlling the velocity of the cells that are transiting out of the primitive streak.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas Fetais/genética , Linha Primitiva/embriologia , Proteínas com Domínio T/genética , Via de Sinalização Wnt , beta Catenina/genética , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Embrião de Mamíferos/embriologia , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Proteínas com Domínio T/metabolismo , beta Catenina/metabolismo
7.
Biol Open ; 3(7): 614-26, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24950969

RESUMO

Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a "race for fates" in which the neuroectodermal fate has an advantage.

8.
Mol Syst Biol ; 9: 694, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24104477

RESUMO

Pluripotency in embryonic stem cells is maintained through the activity of a small set of transcription factors centred around Oct4 and Nanog, which control the expression of 'self-renewal' and 'differentiation' genes. Here, we combine single-cell quantitative immunofluorescence microscopy and gene expression analysis, together with theoretical modelling, to investigate how the activity of those factors is regulated. We uncover a key role for post-translational regulation in the maintenance of pluripotency, which complements the well-established transcriptional regulatory layer. Specifically, we find that the activity of a network of protein complexes involving Nanog, Oct4, Tcf3, and ß-catenin suffices to account for the behavior of ES cells under different conditions. Our results suggest that the function of the network is to buffer the transcriptional activity of Oct4, which appears to be the main determinant to exit pluripotency. The protein network explains the mechanisms underlying the gain and loss of function in different mutants, and brings us closer to a full understanding of the molecular basis of pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Mapas de Interação de Proteínas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Genéticos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Análise de Célula Única , beta Catenina/genética , beta Catenina/metabolismo
9.
Annu Rev Biophys ; 42: 605-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527779

RESUMO

Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Animais , Bactérias/genética , Bactérias/metabolismo , Padronização Corporal , Fenômenos Fisiológicos Celulares , Perfilação da Expressão Gênica , Humanos , Especificidade de Órgãos
10.
Proc Natl Acad Sci U S A ; 109(46): 18891-6, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23012477

RESUMO

From microbial biofilm communities to multicellular organisms, 3D macroscopic structures develop through poorly understood interplay between cellular processes and mechanical forces. Investigating wrinkled biofilms of Bacillus subtilis, we discovered a pattern of localized cell death that spatially focuses mechanical forces, and thereby initiates wrinkle formation. Deletion of genes implicated in biofilm development, together with mathematical modeling, revealed that ECM production underlies the localization of cell death. Simultaneously with cell death, we quantitatively measured mechanical stiffness and movement in WT and mutant biofilms. Results suggest that localized cell death provides an outlet for lateral compressive forces, thereby promoting vertical mechanical buckling, which subsequently leads to wrinkle formation. Guided by these findings, we were able to generate artificial wrinkle patterns within biofilms. Formation of 3D structures facilitated by cell death may underlie self-organization in other developmental systems, and could enable engineering of macroscopic structures from cell populations.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Deleção de Genes , Genes Bacterianos/fisiologia
11.
Stem Cells ; 30(12): 2683-91, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22969005

RESUMO

The pluripotent state is traditionally associated with large absolute levels of certain transcription factors such as Nanog and Oct4. Here, we present experimental observations using quantitative immunofluorescence that pluripotency in mouse embryonic stem cells (mESCs) is established by specific ratios between Oct4 and Nanog. When cells are grown in 2i conditions, they exhibit uniform levels of pluripotency and this is associated with a high correlation between the levels of Oct4 and Nanog in individual cells. The correlation is lost when cells differentiate. Our results suggest that the correlation between these two factors and the distribution of Oct4/Nanog ratios can be used as quantifiers to distinguish between three subpopulations in an mESC culture: pluripotent, lineage-primed, and differentiating cells. When we apply these quantifiers to cells with lower levels of Nanog or mutant for ß-Catenin or Tcf3, the results suggest that these cells exhibit higher probability of differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Imunofluorescência , Camundongos , Proteína Homeobox Nanog , Transdução de Sinais , beta Catenina/metabolismo
12.
PLoS Comput Biol ; 7(12): e1002297, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174668

RESUMO

Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant. When information is received by a cell signaling network via one specific input, the existence of other stimuli can provide a background activity -or chatter- that may affect signal transmission through the network and, therefore, the response of the cell. Here we study the modulation of information processing by chatter in the signaling network of a human cell, specifically, in a Boolean model of the signal transduction network of a fibroblast. We observe that the level of external chatter shapes the response of the system to information carrying signals in a nontrivial manner, modulates the activity levels of the network outputs, and effectively determines the paths of information flow. Our results show that the interactions and node dynamics, far from being random, confer versatility to the signaling network and allow transitions between different information-processing scenarios.


Assuntos
Comunicação Celular , Transdução de Sinais/fisiologia , Humanos
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 1): 061904, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797400

RESUMO

Many cellular functions are based on the rhythmic organization of biological processes into self-repeating cascades of events. Some of these periodic processes, such as the cell cycles of several species, exhibit conspicuous irregularities in the form of period skippings, which lead to polymodal distributions of cycle lengths. A recently proposed mechanism that accounts for this quantized behavior is the stabilization of a Hopf-unstable state by molecular noise. Here we investigate the effect of varying noise in a model system, namely an excitable activator-repressor genetic circuit, that displays this noise-induced stabilization effect. Our results show that an optimal noise level enhances the regularity (coherence) of the cycles, in a form of coherence resonance. Similar noise levels also optimize the multimodal nature of the cycle lengths. Together, these results illustrate how molecular noise within a minimal gene regulatory motif confers robust generation of polymodal patterns of periodicity.


Assuntos
Modelos Genéticos , Periodicidade , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Inativação Gênica/fisiologia , RNA Mensageiro/genética , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
14.
Math Biosci ; 231(1): 90-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21419138

RESUMO

Certain cellular processes take the form of activity pulses that can be interpreted in terms of noise-driven excitable dynamics. Here we present an overview of different gene circuit architectures that exhibit excitable pulses of protein expression, when subject to molecular noise. Different types of excitable dynamics can occur depending on the bifurcation structure leading to the specific excitable phase-space topology. The bifurcation structure is not, however, linked to a particular circuit architecture. Thus a given gene circuit design can sustain different classes of excitable dynamics depending on the system parameters.


Assuntos
Redes Reguladoras de Genes/genética , Modelos Genéticos , Cinética , Biologia de Sistemas
15.
BMC Syst Biol ; 4: 110, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20701766

RESUMO

BACKGROUND: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, tau, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where tau can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called tau-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as tau grows. RESULTS: In this paper we extend Poisson tau-leap methods to a general class of Runge-Kutta (RK) tau-leap methods. We show that with the proper selection of the coefficients, the variance of the extended tau-leap can be well-behaved, leading to significantly larger step sizes. CONCLUSIONS: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original tau-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.


Assuntos
Modelos Biológicos , Análise de Variância , Isomerismo , Cinética , Modelos Lineares , Sistema de Sinalização das MAP Quinases , Distribuição de Poisson , Processos Estocásticos
16.
Nat Struct Mol Biol ; 16(10): 1074-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19734898

RESUMO

The histone variants macroH2A1 and macroH2A2 are associated with X chromosome inactivation in female mammals. However, the physiological function of macroH2A proteins on autosomes is poorly understood. Microarray-based analysis in human male pluripotent cells uncovered occupancy of both macroH2A variants at many genes encoding key regulators of development and cell fate decisions. On these genes, the presence of macroH2A1+2 is a repressive mark that overlaps locally and functionally with Polycomb repressive complex 2. We demonstrate that macroH2A1+2 contribute to the fine-tuning of temporal activation of HOXA cluster genes during neuronal differentiation. Furthermore, elimination of macroH2A2 function in zebrafish embryos produced severe but specific phenotypes. Taken together, our data demonstrate that macroH2A variants constitute an important epigenetic mark involved in the concerted regulation of gene expression programs during cellular differentiation and vertebrate development.


Assuntos
Epigênese Genética , Histonas/química , Animais , Linhagem da Célula , Regulação da Expressão Gênica , Variação Genética , Histonas/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas do Grupo Polycomb , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...