Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(7): 920-928, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465295

RESUMO

Allosteric glutaminase inhibitors demonstrate inhibition of glutamine-dependent cancer cells with low general drug toxicity, but have issues with efficacy in vivo. Here, we designed a series of diselenide compounds with 6 atoms in the middle, aiming to target the allosteric site of kidney type glutaminase (KGA) with a covalent linkage to strengthen the interaction. Proteomic analysis demonstrated that the diselenide compounds cross-linked with the Lys320 residue at the KGA allosteric site; this was confirmed by the KGA K320A mutant which showed essentially no binding to the diselenide. Further, structure-activity relationship (SAR) analysis demonstrated that growth inhibition correlated well with KGA inhibition and was enhanced by thioredoxin reductase (TrxR) inhibition. Interestingly, diselenide compounds showed no inhibition of glutamate dehydrogenase (GDH), indicating some enzyme selectivity. Importantly, the designed novel diselenides are glutaminase allosteric inhibitors that showed in vivo efficacy and survival in the xenograft animal model.

2.
ACS Med Chem Lett ; 14(1): 11-17, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36655131

RESUMO

Reversible allosteric inhibitors of kidney-type glutaminase (GLS1, KGA) showed incomplete inhibition of cancer cell proliferation and poor in vivo efficacy. Here, we investigate some irreversible inhibitors targeting the critical K320 residue responsible for GLS1 biological activity. The (trifluoromethoxy)phenylacetic acid motif was replaced by α,ß-unsaturated carboxylic acids, and the resulting terminally substituted CB839 derivatives (e.g., GJ2 and GJ5) showed good stability in solid form at room temperature, and better liver microsome stability and in vivo pharmacokinetics than coumarin. Both compounds showed binding to the wild-type KGA, whose K D is 106-fold stronger than that of CB839, but only weak binding to the KGA K320A mutant and no inhibition of GDH proteins. Interestingly, GJ2 treatment significantly decreased the trypsin digestion of KGA, tumor cell clonal formation, and cancer cell growth rate. Taking these results together, targeting the critical K320 residue of GLS1 might be a new strategy to make a potent GLS1 allosteric inhibitor.

3.
Assay Drug Dev Technol ; 20(4): 175-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35723616

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) are challenging pathogenic bacteria that can cause severe infection leading to high mortality rates. We found that both the oxacillin- and cefoxitin-resistant S. aureus strains isolated from clinic showed multidrug-resistant (MDR) characteristics. Through rapid high-throughput screen (HTS) of a compound library, gemcitabine and selen compounds were found to effectively inhibit S. aureus growth. For further improvement, we synthesized selen-containing gemcitabine that demonstrated relatively potent antimicrobial activity against several MDR MRSA in vitro. The HTS assay and gemcitabine selen derivative provided a useful tool to explore an effective molecular target to treat MDR MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Desoxicitidina/análogos & derivados , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Gencitabina
4.
Int J Nanomedicine ; 17: 213-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35058693

RESUMO

INTRODUCTION: Kidney-type glutaminase (KGA) has been an important anti-tumor drug target, and KGA allosteric inhibitors attracted much interest for their superior enzymatic specificity with good drug safety profiles. For glutaminase allosteric inhibitors such as BPTES, CB-839 and Selen derivatives, the low solubility remains as the main factor that limits in vivo efficacy. The 1,3,4-Selenadiazole compound CPD 23 showed improved in vivo efficacy but worse solubility; however, the graft polymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCap-PVA-PEG), Soluplus® (SOL) stood out as an excellent delivery carrier for CPD 23. METHODS: The CPD 23@SOL micelles were prepared, optimized and evaluated through on the basis of solubility improvement and loading capacity. Characterizations of particle size and Zeta potential by dynamic light scattering, morphology by transmission electron microscopy and solid state by X-ray powder diffraction were closely conducted. The biological studies included the tumor cell growth inhibition, blood and liver microsomal stability, in vivo pharmacokinetics and tissue biodistribution. RESULTS: At 1:20 ratio of CPD 23:SOL, CPD 23@SOL micelles were well-dispersed, spherical and stable, with size less than 200 nm with encapsulation efficiency of more than 90%. This SOL micellar system significantly increased the aqueous solubility of CPD 23 by 15,000 folds. Particularly, CPD 23@SOL micelles demonstrated higher stability in blood and liver microsomes, showing approximately 86% remaining at 2 h incubation and about 66% at 4 h, respectively. In addition, with or without micellar formulation, CPD 23 maintained essentially the same inhibitory activity in tumor cells. Interestingly, CPD 23@SOL micelles significantly improved the pharmacokinetic exposure, prolonged the in vivo circulation and dramatically changed tissue biodistributions of CPD 23. CONCLUSION: The current work provided an encouraging and practical delivery system for novel Selenadiazoles and glutaminase allosteric inhibitors whose poor water-soluble characteristic has been a bottleneck for the field.


Assuntos
Glutaminase , Micelas , Portadores de Fármacos , Polietilenoglicóis , Polímeros , Solubilidade , Distribuição Tecidual
5.
Curr Med Chem ; 29(15): 2652-2672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34525914

RESUMO

Hyperinsulinism-hyperammonemia syndrome (HHS) is a rare disease characterized by recurrent hypoglycemia and persistent elevation of plasma ammonia, and it can lead to severe epilepsy and permanent brain damage. It has been demonstrated that functional mutations of glutamate dehydrogenase (GDH), an enzyme in the mitochondrial matrix, are responsible for the HHS. Thus, GDH has become a promising target for the small molecule therapeutic intervention of HHS. Several medicinal chemistry studies are currently aimed at GDH, however, to date, none of the compounds reported has been entered clinical trials. This perspective summarizes the progress in the discovery and development of GDH inhibitors, including the pathogenesis of HHS, potential binding sites, screening methods, and research models. Future therapeutic perspectives are offered to provide a reference for discovering potent GDH modulators and encourage additional research that will provide more comprehensive guidance for drug development.


Assuntos
Hiperamonemia , Hiperinsulinismo , Hipoglicemia , Glutamato Desidrogenase/química , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Humanos , Hiperamonemia/tratamento farmacológico , Hiperamonemia/genética , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/genética , Mutação
6.
J Microbiol Methods ; 181: 106136, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422524

RESUMO

Drug resistance has become a serious public health problem in mycobacterial infectious diseases. Here, we investigated a water soluble tetrazolium salt (EZMTT)-based detection method to provide an easy, safe and quantitative antimycobacterial susceptibility test (AMST) method, especially for targeting early detection of loss of drug susceptibility in mycobacteria. After a single addition of the EZMTT detection reagent at the inoculation of mycobacteria culture, the AMST was continuously analyzed in a sealed 96-well plate (100 µl), or a sealed tube to ensure biosafety. Using Mycobacterium tuberculosis H37Ra as the model strain, the EZMTT assay was developed with high reproducibility (Z factor of 0.64) for facile measurements of growth and drug susceptibility. In the comparative AMST study, the 7-day EZMTT method identified not only the same set of drug resistance as the other two methods (the 30-day traditional Löwenstein Jensen solid medium assay and the 10-14 day 8 ml Mycobacteria Growth Indicator Tube liquid method), but also additional strains with loss of drug susceptibility. In conclusion, we demonstrated that the EZMTT-based AMST assay in a sealed microtiter plate has great potential for routine use in medical diagnosis and drug screening to battle the unmet medical need in the treatment of multi- and extensive-drug resistant mycobacteria.


Assuntos
Farmacorresistência Bacteriana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Sais de Tetrazólio/metabolismo , Tuberculose , Antituberculosos/metabolismo , Meios de Cultura/química , Humanos , Testes de Sensibilidade Microbiana/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia
7.
RSC Chem Biol ; 2(6): 1669-1681, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34977582

RESUMO

Glutaminolysis inhibitors have shown early promise in cancer therapeutics. Specifically, kidney-type glutaminase (KGA) has been a long-standing anti-tumor drug target; KGA allosteric inhibitors have attracted great attention due to their superior enzyme specificity and good drug safety profiles. However, the main issue with allosteric inhibitors-including BPTES, CB-839, and the recently developed KGA allosteric and glutamate dehydrogenase (GDH) dual inhibitor, Hexylselen (CPD-3B)-is their low solubility; it leads to limited in vivo efficacy. To optimize their formulation, various delivery carriers were screened in the present study. Soluplus® (SOL), an amphiphilic graft polymer, showed an interesting structure-solubility/activity relationship with Selen molecules containing different middle chain sizes. Among these molecules, the long chain molecule CPD-3B showed 3000-fold increased solubility with SOL, forming well-dispersed and stable micelles 60-80 nm in size. Moreover, CPD-3B@SOL micelles exhibited good metabolic stability in both blood and liver microsomes. These advantages significantly enhanced the bioavailability and in vivo antitumor efficacy of CPD-3B@SOL micelles in the H22 hepatocarcinoma xenograft mouse model. Thus, the current study provided a practical delivery system for allosteric inhibitors of glutaminase, which is one of the bottlenecks of targeting tumor glutaminolysis.

8.
Cell Chem Biol ; 27(12): 1483-1499.e9, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33186540

RESUMO

H2S-producing enzymes in bacteria have been shown to be closely engaged in the process of microbial survival and antibiotic resistance. However, no inhibitors have been discovered for these enzymes, e.g., 3-mercaptopyruvate sulfurtransferase (MST). In the present study, we identified several classes of inhibitors for Escherichia coli MST (eMST) through high-throughput screening of ∼26,000 compounds. The thiazolidinedione-type inhibitors were found to selectively bind to Arg178 and Ser239 residues of eMST but hardly affected human MST. Moreover, the pioglitazone of this class concentration dependently accumulates the 3-mercaptopyruvate substrate and suppresses the H2S and reactive sulfane sulfur products in bacteria. Importantly, pioglitazone could potentiate the level of reactive oxygen species in cellulo and consequently enhance the antimicrobial effects of gentamicin and macrophages in culture. This study has identified the bioactive inhibitor of eMST, paving the way for the pharmacological targeting of eMST to synergistically control the survival of E. coli.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Sulfurtransferases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Escherichia coli/fisiologia , Ensaios de Triagem em Larga Escala , Humanos
9.
Bioorg Med Chem Lett ; 30(11): 127134, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32253062

RESUMO

The rate of drug-induced proliferation (DIP) has been proposed as an unbiased alternative drug effect metric. However, current assays are not easy and precise enough to track minor changes in cell growth. Here, we report the optimized EZMTT based detection method which can continuously measure time-dependent growth after drug treatment and reliably detect partial drug resistance for cancer cells. Importantly, tracking time-dependent growth after drug treatment demonstrated that a KGA allosteric inhibitor alone failed to completely inhibit cancer cell growth, but a drug combination was able to provide complete inhibition in cell-based assays that translated well in in vivo animal experiments. In conclusion, this simple EZMTT method provided precise measurement of loss of susceptibility after drug treatment and has great potential to be developed for drug efficacy and drug combination studies to solve the unmet medical need.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Glutaminase/química , Glutaminase/metabolismo , Humanos , Concentração Inibidora 50 , Paclitaxel/química , Paclitaxel/farmacologia , Sirolimo/química , Sirolimo/farmacologia
10.
Bioorg Med Chem Lett ; 29(17): 2498-2502, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324513

RESUMO

Hexylselen is a novel submicromolar dual KGA/GDH inhibitor, which demonstrates potent inhibition of cancer cells with minimal toxicity. To further investigation its mechanism of action, we designed and synthesized its biotinylated derivative 2 as a novel probe. From commercially available starting material, 2 was obtained in 6 steps with 13.4% overall yield. It is notable that this practical synthetic route give a template for the preparation of unsymmetrical di-benzo[d][1,2]selenazol-3(2H)-ones. Based on probe 2, we developed a novel biomolecular interaction assay for convenient and reliable test of KGA allosteric inhibitors and confirmed that hexylselen as an allosteric inhibitor of KGA sharing the same binding pocket with BPTES but not with Ebselen via competitive experiments.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Selênio/química , Regulação Alostérica/efeitos dos fármacos , Azóis/química , Azóis/metabolismo , Biotinilação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Cinética , Ligação Proteica
11.
ACS Infect Dis ; 5(7): 1252-1263, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31243989

RESUMO

Antimicrobial drug resistance has become a serious public health problem. The current clinical diagnostic methods are turbidity-based assays that have been used for years to track bacterial growth; however, the method is relatively insensitive. To eliminate the new occurrence of drug resistance in infectious bacteria, we developed a highly sensitive EZMTT method for the antibiotic susceptibility test (AST) that magnified the cell growth signal and revealed partial drug resistance (showing 2-20% weak cell growth) that was not detected by the current turbidity assay within 24 h. By simply mixing the EZMTT dye with the bacterial culture and then following the growth by absorbance measurement at 450 nm, the drug-induced proliferation (DIP) rate can be obtained in a high-throughput-screening (HTS) mode with greater than 10-fold better sensitivity than the turbidity assay. The EZMTT-based DIP rate assay of 5 clinically isolated E. coli strains found approximately 30% more partial drug resistance than what was detected in the traditional turbidity-based assay. The observed partial drug resistance was further confirmed by mechanistic analyses. Therefore, a combination of the EZMTT dye and the current clinically used VITEK-type technology has great potential to help understand antimicrobial drug resistance and ultimately provide patients with precise medical care to prevent the occurrence of multidrug resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Bactérias/efeitos dos fármacos , Técnicas Bacteriológicas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Sais de Tetrazólio/química
12.
PLoS Biol ; 17(5): e3000252, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31112550

RESUMO

Rapamycin (Rap) and its derivatives, called rapalogs, are being explored in clinical trials targeting cancer and neurodegeneration. The underlying mechanisms of Rap actions, however, are not well understood. Mechanistic target of rapamycin (mTOR), a lysosome-localized protein kinase that acts as a critical regulator of cellular growth, is believed to mediate most Rap actions. Here, we identified mucolipin 1 (transient receptor potential channel mucolipin 1 [TRPML1], also known as MCOLN1), the principle Ca2+ release channel in the lysosome, as another direct target of Rap. Patch-clamping of isolated lysosomal membranes showed that micromolar concentrations of Rap and some rapalogs activated lysosomal TRPML1 directly and specifically. Pharmacological inhibition or genetic inactivation of mTOR failed to mimic the Rap effect. In vitro binding assays revealed that Rap bound directly to purified TRPML1 proteins with a micromolar affinity. In both healthy and disease human fibroblasts, Rap and rapalogs induced autophagic flux via nuclear translocation of transcription factor EB (TFEB). However, such effects were abolished in TRPML1-deficient cells or by TRPML1 inhibitors. Hence, Rap and rapalogs promote autophagy via a TRPML1-dependent mechanism. Given the demonstrated roles of TRPML1 and TFEB in cellular clearance, we propose that lysosomal TRPML1 may contribute a significant portion to the in vivo neuroprotective and anti-aging effects of Rap via an augmentation of autophagy and lysosomal biogenesis.


Assuntos
Lisossomos/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cálcio/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/química
13.
Bioorg Med Chem Lett ; 29(13): 1673-1676, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076348

RESUMO

Organotellurium compounds have been reported as an immune-modulator sensitizing chemotherapeutics. Herein, we report the design and synthesis of a series of novel tellurodibenzoic acids as mimics of diphenylarsenic acid (DPAA) and potential selective KGA inhibitors. Representative compound 3B exhibited potent inhibition of KGA and glutamine-dependent HCT-116 cells. Stability experiments indicated that 3B has excellent stability under acidic (HCOOH), basic (NH3·H2O) and oxidative (H2O2) conditions, but reacts with ß-ME, DTT and lysine which suggested that compound 3B may interact with cysteine or lysine residues. Moreover, molecular docking disclosed that compound 3B binds to the allosteric site of the GAC tetramer containing Arg317-Lys320-Leu321-Phe322-Tyr394-Glu325, which helped to rationalize the SAR and further design and optimization. Taken together, compound 3B could be used as a starting point for the development of new KGA inhibitors.


Assuntos
Benzoatos/química , Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Compostos Organometálicos/química , Telúrio/química , Benzoatos/síntese química , Benzoatos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glutaminase/química , Células HCT116 , Humanos , Rim/enzimologia , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia
14.
Biochem Biophys Res Commun ; 509(1): 262-267, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30583861

RESUMO

High levels of glutamate dehydrogenase (GDH) activity are associated with hypoglycemia, cancer, and Parkinson's disease. Propylselen was synthesized to investigate its mechanism of GDH inhibition in comparison with Ebselen and Epigallocatechin gallate (EGCG). Because Ebselen was found to crosslink with the peptide (AA299-341) at the active site of E.coli GDH, the Cys, Pro, and Lys residues of the corresponding peptide were mutagenized to Ala residues. Using enzyme kinetics and biomolecular interaction assays, we found that the conserved GDH P320 residue is important for propylselen binding, C321 for Ebselen binding, and K341 for EGCG binding. In addition, these 3 mutations abolished NADP+ binding to E. coli GDH in the absence of glutamate substrate, but in the presence of glutamate, the catalytic activity of the mutants was reduced only by 2-4 fold, indicating that a substrate-induced fit mechanism exists in E. coli GDH. Furthermore, biochemical analysis showed that NADP+ had high affinity (Kd of 77 nM) for GDH; by targeting the NADP binding site, propylselen effectively inhibited both E. coli and human GDH activity and improved anticancer activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Azóis/química , Azóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Glutamato Desidrogenase/antagonistas & inibidores , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Escherichia coli/enzimologia , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Humanos , Isoindóis , Simulação de Acoplamento Molecular , NADP/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
15.
J Med Chem ; 62(2): 589-603, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30543285

RESUMO

Kidney-type glutaminase [KGA/isoenzyme glutaminase C (GAC)] is becoming an important tumor metabolism target in cancer chemotherapy. Its allosteric inhibitor, CB839, showed early promise in cancer therapeutics but limited efficacy in in vivo cancer models. To improve the in vivo activity, we explored a bioisostere replacement of the sulfur atom in bis-2-(5-phenylacetamido-1,2,4-thiadiazol)ethyl sulfide and CB839 analogues with selenium using a novel synthesis of the selenadiazole moiety from carboxylic acids or nitriles. The resulting selenadiazole compounds showed enhanced KGA inhibition, more potent induction of reactive oxygen species, improved inhibition of cancer cells, and higher cellular and tumor accumulation than the corresponding sulfur-containing molecules. However, both CB839 and its selenium analogues show incomplete inhibition of the tested cancer cells, and a partial reduction in tumor size was observed in both the glutamine-dependent HCT116 and aggressive H22 liver cancer xenograft models. Despite this, tumor tissue damage and prolonged survival were observed in animals treated with the selenium analogue of CB839.


Assuntos
Antineoplásicos/química , Azóis/química , Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Regulação Alostérica , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glutaminase/metabolismo , Humanos , Rim/enzimologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Transplante Heterólogo
16.
ACS Pharmacol Transl Sci ; 2(1): 18-30, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32219214

RESUMO

Tumor metabolism has been deeply investigated for cancer therapeutics. Here, we demonstrate that glutamine deficiency alone could not completely inhibit cancer cell growth and that many potent kidney-type glutaminase (KGA) inhibitors did not show satisfying in vivo efficacy. The potent KGA allosteric inhibitor, CB-839, resulted in up to 80% growth inhibition of all tested cell lines, whereas Hexylselen (CPD-3B), a KGA/glutamate dehydrogenase (GDH) inhibitor, showed essentially no toxicity to normal cells up to a 10 µM concentration and could completely inhibit the growth of many aggressive cell lines. Further analyses showed that CPD-3B targets not only KGA and GDH but also thioredoxin reductase (TrxR) and amidotransferase (GatCAB), which results in corresponding regulation of Akt/Erk/caspase-9 signaling pathways. In an aggressive liver cancer xenograft model, CPD-3B significantly reduced tumor size, caused massive tumor tissue damage, and prolonged survival rate. These provide important information for furthering the drug design of an effective anticancer KGA allosteric inhibitor.

17.
Bioorg Med Chem Lett ; 28(22): 3560-3563, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293953

RESUMO

The detection of the insulin-dependent glucose uptake is a vital part in the research of diabetes. To establish a sensitive assay for measuring glucose uptake in living cells, we synthesized a FITC linked d-glucosamine 2 as a probe. 2 was obtained by the reaction of commercially available d-glucosamine hydrochloride and FITC and was determined as a single anomeric form by 1H NMR and 13C NMR. 2 exhibited good water solubility and stability. An uptake assay in HepG2 cells with or without insulin demonstrated that FITC showed strong cellular uptake, whereas uptake of 2 is much less but is insulin dependent. This suggests that 2 is specifically transported into cells through a receptor that is regulated by insulin and has potential application in screening of compounds or genes that regulate the insulin-dependence in cell-based assays.


Assuntos
Fluoresceína-5-Isotiocianato/química , Glucose/análogos & derivados , Glucose/metabolismo , Insulina/farmacologia , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência
18.
Assay Drug Dev Technol ; 16(2): 115-122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29470101

RESUMO

Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.


Assuntos
Azóis/farmacologia , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/química , Compostos Organosselênicos/farmacologia , Azóis/química , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Glutamato Desidrogenase/isolamento & purificação , Glutamato Desidrogenase/metabolismo , Humanos , Isoindóis , Modelos Moleculares , Estrutura Molecular , Compostos Organosselênicos/química , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 27(24): 5382-5386, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29153424

RESUMO

A diverse natural product-like (NPL) synthetic abietane diterpenoid library containing 86 compounds were obtained and the SARs were studied based on their antibacterial potential. Further in vitro cytotoxic and in silico drug-like properties evaluation showed that the potent antibacterial compound 84 had good drug-like properties and displayed low cytotoxicity toward noncancerous mammalian cells, indicating the study of AA and DHAA might be a good starting point for the search of novel antimicrobial molecules. Future work should be focused on the optimization of their potency and selectivity.


Assuntos
Abietanos/química , Antibacterianos/síntese química , Abietanos/síntese química , Abietanos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Click , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
20.
ACS Chem Biol ; 12(12): 3003-3011, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29072450

RESUMO

Ebselen modulates target proteins through redox reactions with selenocysteine/cysteine residues, or through binding to the zinc finger domains. However, a recent contradiction in ebselen inhibition of kidney type glutaminase (KGA) stimulated our interest in investigating its inhibition mechanism with glutamate dehydrogenase (GDH), KGA, thioredoxin reductase (TrxR), and glutathione S-transferase. Fluorescein- or biotin-labeled ebselen derivatives were synthesized for mechanistic analyses. Biomolecular interaction analyses showed that only GDH, KGA, and TrxR proteins can bind to the ebselen derivative, and the binding to GDH and KGA could be competed off by glutamine or glutamate. From the gel shift assays, the fluorescein-labeled ebselen derivative could co-migrate with hexameric GDH and monomeric/dimeric TrxR in a dose-dependent manner; it also co-migrated with KGA but disrupted the tetrameric form of the KGA enzyme at a high compound concentration. Further proteomic analysis demonstrated that the ebselen derivative could cross-link with proteins through a specific cysteine at the active site of GDH and TrxR proteins, but for KGA protein, the binding site is at the N-terminal appendix domain outside of the catalytic domain, which might explain why ebselen is not a potent KGA enzyme inhibitor in functional assays. In conclusion, ebselen could inhibit enzyme activity by binding to the catalytic domain or disruption of the protein complex. In addition, ebselen is a relatively potent selective GDH inhibitor that might provide potential therapeutic opportunities for hyperinsulinism-hyperammonemia syndrome patients who have the mutational loss of GTP inhibition.


Assuntos
Azóis/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutaminase/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Sequência de Aminoácidos , Azóis/química , Clonagem Molecular , Escherichia coli/metabolismo , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Glutaminase/química , Glutaminase/classificação , Glutaminase/metabolismo , Isoindóis , Modelos Moleculares , Compostos Organosselênicos/química , Conformação Proteica , Proteômica , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...