Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(19): 1501-1515, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38223978

RESUMO

BACKGROUND: During the neonatal stage, the cardiomyocyte undergoes a constellation of molecular, cytoarchitectural, and functional changes known collectively as cardiomyocyte maturation to increase myocardial contractility and cardiac output. Despite the importance of cardiomyocyte maturation, the molecular mechanisms governing this critical process remain largely unexplored. METHODS: We leveraged an in vivo mosaic knockout system to characterize the role of Carm1, the founding member of protein arginine methyltransferase, in cardiomyocyte maturation. Using a battery of assays, including immunohistochemistry, immuno-electron microscopy imaging, and action potential recording, we assessed the effect of loss of Carm1 function on cardiomyocyte cell growth, myofibril expansion, T-tubule formation, and electrophysiological maturation. Genome-wide transcriptome profiling, H3R17me2a chromatin immunoprecipitation followed by sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing were used to investigate the mechanisms by which CARM1 (coactivator-associated arginine methyltransferase 1) regulates cardiomyocyte maturation. Finally, we interrogated the human syntenic region to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks for single-nucleotide polymorphisms associated with human heart diseases. RESULTS: We report that mosaic ablation of Carm1 disrupts multiple aspects of cardiomyocyte maturation cell autonomously, leading to reduced cardiomyocyte size and sarcomere thickness, severe loss and disorganization of T tubules, and compromised electrophysiological maturation. Genomics study demonstrates that CARM1 directly activates genes that underlie cardiomyocyte cytoarchitectural and electrophysiological maturation. Moreover, our study reveals significant enrichment of human heart disease-associated single-nucleotide polymorphisms in the human genomic region syntenic to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks. CONCLUSIONS: This study establishes a critical and multifaceted role for CARM1 in regulating cardiomyocyte maturation and demonstrates that deregulation of CARM1-dependent cardiomyocyte maturation gene expression may contribute to human heart diseases.


Assuntos
Epigênese Genética , Miócitos Cardíacos , Proteína-Arginina N-Metiltransferases , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Camundongos , Humanos , Camundongos Knockout , Diferenciação Celular
2.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747643

RESUMO

Aims: The behavior of pacemaker cardiomyocytes (PCs) in the sinoatrial node (SAN) is modulated by neurohormonal and paracrine factors, many of which signal through G-protein coupled receptors (GPCRs). The aims of the present study are to catalog GPCRs that are differentially expressed in the mammalian SAN and to define the acute physiological consequences of activating the cholecystokinin-A signaling system in isolated PCs. Methods and Results: Using bulk and single cell RNA sequencing datasets, we identify a set of GPCRs that are differentially expressed between SAN and right atrial tissue, including several whose roles in PCs and in the SAN have not been thoroughly characterized. Focusing on one such GPCR, Cholecystokinin-A receptor (CCK A R), we demonstrate expression of Cckar mRNA specifically in mouse PCs, and further demonstrate that subsets of SAN fibroblasts and neurons within the cardiac intrinsic nervous system express cholecystokinin, the ligand for CCK A R. Using mouse models, we find that while baseline SAN function is not dramatically affected by loss of CCK A R, the firing rate of individual PCs is slowed by exposure to sulfated cholecystokinin-8 (sCCK-8), the high affinity ligand for CCK A R. The effect of sCCK-8 on firing rate is mediated by reduction in the rate of spontaneous phase 4 depolarization of PCs and is mitigated by activation of beta-adrenergic signaling. Conclusions: (1) PCs express many GPCRs whose specific roles in SAN function have not been characterized, (2) Activation of the the cholecystokinin-A signaling pathway regulates PC automaticity.

3.
Front Physiol ; 14: 1284673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179138

RESUMO

Aims: The behavior of pacemaker cardiomyocytes (PCs) in the sinoatrial node (SAN) is modulated by neurohormonal and paracrine factors, many of which signal through G-protein coupled receptors (GPCRs). The aims of the present study are to catalog GPCRs that are differentially expressed in the mammalian SAN and to define the acute physiological consequences of activating the cholecystokinin-A signaling system in isolated PCs. Methods and results: Using bulk and single cell RNA sequencing datasets, we identify a set of GPCRs that are differentially expressed between SAN and right atrial tissue, including several whose roles in PCs and in the SAN have not been thoroughly characterized. Focusing on one such GPCR, Cholecystokinin-A receptor (CCKAR), we demonstrate expression of Cckar mRNA specifically in mouse PCs, and further demonstrate that subsets of SAN fibroblasts and neurons within the cardiac intrinsic nervous system express cholecystokinin, the ligand for CCKAR. Using mouse models, we find that while baseline SAN function is not dramatically affected by loss of CCKAR, the firing rate of individual PCs is slowed by exposure to sulfated cholecystokinin-8 (sCCK-8), the high affinity ligand for CCKAR. The effect of sCCK-8 on firing rate is mediated by reduction in the rate of spontaneous phase 4 depolarization of PCs and is mitigated by activation of beta-adrenergic signaling. Conclusion: (1) PCs express many GPCRs whose specific roles in SAN function have not been characterized, (2) Activation of the cholecystokinin-A signaling pathway regulates PC automaticity.

4.
Circulation ; 146(10): 770-787, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35938400

RESUMO

BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.


Assuntos
Fator de Transcrição GATA4 , Células-Tronco Pluripotentes Induzidas , Processamento Alternativo , Animais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , RNA/genética , RNA/metabolismo
5.
Circ Res ; 127(12): 1502-1518, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33044128

RESUMO

RATIONALE: Cardiac pacemaker cells (PCs) in the sinoatrial node (SAN) have a distinct gene expression program that allows them to fire automatically and initiate the heartbeat. Although critical SAN transcription factors, including Isl1 (Islet-1), Tbx3 (T-box transcription factor 3), and Shox2 (short-stature homeobox protein 2), have been identified, the cis-regulatory architecture that governs PC-specific gene expression is not understood, and discrete enhancers required for gene regulation in the SAN have not been identified. OBJECTIVE: To define the epigenetic profile of PCs using comparative ATAC-seq (assay for transposase-accessible chromatin with sequencing) and to identify novel enhancers involved in SAN gene regulation, development, and function. METHODS AND RESULTS: We used ATAC-seq on sorted neonatal mouse SAN to compare regions of accessible chromatin in PCs and right atrial cardiomyocytes. PC-enriched assay for transposase-accessible chromatin peaks, representing candidate SAN regulatory elements, were located near established SAN genes and were enriched for distinct sets of TF (transcription factor) binding sites. Among several novel SAN enhancers that were experimentally validated using transgenic mice, we identified a 2.9-kb regulatory element at the Isl1 locus that was active specifically in the cardiac inflow at embryonic day 8.5 and throughout later SAN development and maturation. Deletion of this enhancer from the genome of mice resulted in SAN hypoplasia and sinus arrhythmias. The mouse SAN enhancer also directed reporter activity to the inflow tract in developing zebrafish hearts, demonstrating deep conservation of its upstream regulatory network. Finally, single nucleotide polymorphisms in the human genome that occur near the region syntenic to the mouse enhancer exhibit significant associations with resting heart rate in human populations. CONCLUSIONS: (1) PCs have distinct regions of accessible chromatin that correlate with their gene expression profile and contain novel SAN enhancers, (2) cis-regulation of Isl1 specifically in the SAN depends upon a conserved SAN enhancer that regulates PC development and SAN function, and (3) a corresponding human ISL1 enhancer may regulate human SAN function.


Assuntos
Arritmia Sinusal/metabolismo , Relógios Biológicos , Sequenciamento de Cromatina por Imunoprecipitação , Elementos Facilitadores Genéticos , Frequência Cardíaca , Proteínas com Homeodomínio LIM/metabolismo , Nó Sinoatrial/metabolismo , Fatores de Transcrição/metabolismo , Potenciais de Ação , Animais , Arritmia Sinusal/genética , Arritmia Sinusal/fisiopatologia , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Nó Sinoatrial/fisiopatologia , Fatores de Tempo , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Heart Rhythm ; 17(4): 654-660, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31756527

RESUMO

BACKGROUND: Even though ethanol consumption has been associated with risk of atrial fibrillation (AF), little is known about how ethanol affects atrial electrophysiology. OBJECTIVE: The purpose of this study was to study the electrophysiological effect of ethanol on rat AF. METHODS: Atrial optical mapping was performed on male Long Evans rat hearts with escalating concentrations of ethanol (0, 1, 2, and 3 mM). In addition, patch-clamp recordings on isolated atrial myocytes were performed. In chronic ethanol study, rats were divided into control and chronic ethanol groups (20% ethanol in drinking water for 6 months). Atrial optical mapping, histology, immunohistochemistry, and reverse transcriptase polymerase chain reaction were performed in chronic rats. RESULTS: Acute ethanol perfusion increased AF vulnerability (0% at 0 mM, 0% at 1 mM, 57.1% at 2 mM, and 100% at 3 mM) in a dose-related response. Ethanol infusion decreased conduction velocities (CVs) in both atria and shortened effective refractory periods (ERP) only in the right atria with increased in dispersion of refractoriness. Action potential duration at 50% and 90% repolarization from right atrial myocytes were shortened, with corresponding increase of sustained potassium current. Chronic ethanol consumption increased AF inducibility (10% control vs 95.2% chronic ethanol). CVs in both atria were significantly decreased. ERP of the right atrium was shortened, and dispersion of ERP was increased. Expression (mRNA) of KCNQ1 and connexin40 were increased, but KCNA5 was decreased in the right atrium of rats exposed to chronic ethanol. CONCLUSION: Acute and chronic exposure to ethanol increases AF vulnerability by slowing CV, shortening right atrial ERP, and increasing dispersion of ERP.


Assuntos
Fibrilação Atrial/classificação , Eletrocardiografia/efeitos dos fármacos , Etanol/efeitos adversos , Átrios do Coração/efeitos dos fármacos , Doença Aguda , Animais , Fibrilação Atrial/fisiopatologia , Estimulação Cardíaca Artificial , Doença Crônica , Modelos Animais de Doenças , Átrios do Coração/fisiopatologia , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans
7.
JACC Basic Transl Sci ; 2(2): 160-180, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29057374

RESUMO

Phospholamban (PLN) is a key regulator of sarcolemma calcium uptake in cardiomyocyte, its inhibitory activity to SERCA is regulated by phosphorylation. PLN hypophosphorylation is a common molecular feature in failing heart. The current study provided evidence at molecular, cellular and whole heart levels to implicate a sarcolemma membrane targeted protein phosphatase, PP2Ce, as a specific and potent PLN phosphatase. PP2Ce expression was elevated in failing human heart and induced acutely at protein level by ß -adrenergic stimulation or oxidative stress in cardiomyocytes. PP2Ce expression in mouse heart blunted ß-adrenergic response and exacerbated ischemia/reperfusion injury. Therefore, PP2Ce is a new regulator for cardiac function and pathogenesis.

8.
Protein Eng Des Sel ; 29(12): 573-582, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27160178

RESUMO

Human cytidine deaminase (hCDA) is a biomedically important enzyme able to inactivate cytidine nucleoside analogs such as the antileukemic agent cytosine arabinoside (AraC) and thereby limit antineoplastic efficacy. Potent inhibitors of hCDA have been developed, e.g. zebularine, that when administered in combination with AraC enhance antineoplastic activity. Tandem hematopoietic stem cell (HSC) transplantation and combination chemotherapy (zebularine and AraC) could exhibit robust antineoplastic potency, but AraC-based chemotherapy regimens lead to pronounced myelosuppression due to relatively low hCDA activity in HSCs, and this approach could exacerbate this effect. To circumvent the pronounced myelosuppression of zebularine and AraC combination therapy while maintaining antineoplastic potency, zebularine-resistant hCDA variants could be used to gene-modify HSCs prior to transplantation. To achieve this, our approach was to isolate hCDA variants through random mutagenesis in conjunction with selection for hCDA activity and resistance to zebularine in an Escherichia coli genetic complementation system. Here, we report the identification of nine novel variants from a pool of 1.6 × 106 transformants that conferred significant zebularine resistance relative to wild-type hCDA2. Several variants revealed significantly higher Ki values toward zebularine when compared with wild-type hCDA values and, as such, are candidates for further exploration for gene-modified HSC transplantation approaches.


Assuntos
Citidina Desaminase/genética , Citidina/análogos & derivados , Resistência a Medicamentos/genética , Transplante de Células-Tronco Hematopoéticas , Mutação , Engenharia de Proteínas , Sequência de Aminoácidos , Citarabina/farmacologia , Citidina/farmacologia , Citidina Desaminase/antagonistas & inibidores , Escherichia coli/genética , Humanos , Mutagênese
9.
J Virol ; 87(12): 6678-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23552412

RESUMO

Human immunodeficiency virus type 1 (HIV-1) antagonizes innate restriction factors in order to infect and persistently replicate in a host. In a previous study, we demonstrated that HIV-1 NL4-3 with a simian immunodeficiency virus mne (SIVmne) vif gene substitution (HSIV-vif-NL4-3) could infect and replicate in pig-tailed macaques (PTM), indicating that APOBEC3 proteins are primary barriers to transmission. Because viral replication was persistent but low, we hypothesized that HSIV-vif-NL4-3 may be suppressed by type I interferons (IFN-I), which are known to upregulate the expression of innate restriction factors. Here, we demonstrate that IFN-α more potently suppresses HSIV-vif-NL4-3 in PTM CD4(+) T cells than it does pathogenic SIVmne027. Importantly, we identify a variant (HSIV-vif-Yu2) that is resistant to IFN-α, indicating that the IFN-α-induced barrier can be overcome by HSIV-vif chimeras in PTM CD4(+) T cells. Interestingly, HSIV-vif-Yu2 and HSIV-vif-NL4-3 are similarly restricted by PTM BST2/Tetherin, and neither virus downregulates it from the surface of infected PTM CD4(+) T cells. Resistance to IFN-α-induced restriction appears to be conferred by a determinant in HSIV-vif-Yu2 that includes env su. Finally, we show that the Yu-2 env su allele may overcome an IFN-α-induced barrier to entry. Together, our data demonstrate that the prototype macaque-tropic HIV-1 clones based on NL4-3 may not sufficiently antagonize innate restriction in PTM cells. However, variants with resistance to IFN-α-induced restriction factors in PTM CD4(+) T cells may enhance viral replication by overcoming a barrier early in the viral replication cycle.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/genética , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Interferon-alfa/imunologia , Macaca nemestrina/virologia , Animais , Contagem de Linfócito CD4 , Farmacorresistência Viral/imunologia , Células HEK293 , Células HeLa , Humanos , Interferon-alfa/farmacologia , Macaca nemestrina/imunologia , Replicação Viral
10.
Curr Gene Ther ; 12(2): 77-91, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22384805

RESUMO

Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.


Assuntos
Enzimas/metabolismo , Terapia Genética/métodos , Neoplasias/terapia , Pró-Fármacos/uso terapêutico , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Enzimas/genética , Terapia Genética/tendências , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Nucleosídeo Desaminases/genética , Nucleosídeo Desaminases/metabolismo , Nucleotidases/genética , Nucleotidases/metabolismo , Nucleotídeos/metabolismo , Pró-Fármacos/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo
11.
Biology (Basel) ; 1(2): 134-64, 2012 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-23336082

RESUMO

The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.

12.
J Clin Invest ; 120(5): 1494-505, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20364083

RESUMO

In the adult heart, regulation of fatty acid oxidation and mitochondrial genes is controlled by the PPARgamma coactivator-1 (PGC-1) family of transcriptional coactivators. However, in response to pathological stressors such as hemodynamic load or ischemia, cardiac myocytes downregulate PGC-1 activity and fatty acid oxidation genes in preference for glucose metabolism pathways. Interestingly, despite the reduced PGC-1 activity, these pathological stressors are associated with mitochondrial biogenesis, at least initially. The transcription factors that regulate these changes in the setting of reduced PGC-1 are unknown, but Myc can regulate glucose metabolism and mitochondrial biogenesis during cell proliferation and tumorigenesis in cancer cells. Here we have demonstrated that Myc activation in the myocardium of adult mice increases glucose uptake and utilization, downregulates fatty acid oxidation by reducing PGC-1alpha levels, and induces mitochondrial biogenesis. Inactivation of Myc in the adult myocardium attenuated hypertrophic growth and decreased the expression of glycolytic and mitochondrial biogenesis genes in response to hemodynamic load. Surprisingly, the Myc-orchestrated metabolic alterations were associated with preserved cardiac function and improved recovery from ischemia. Our data suggest that Myc directly regulates glucose metabolism and mitochondrial biogenesis in cardiac myocytes and is an important regulator of energy metabolism in the heart in response to pathologic stress.


Assuntos
Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Proliferação de Células , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hemodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica , Neoplasias/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Ativação Transcricional
13.
J Mol Cell Cardiol ; 46(2): 193-200, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19038262

RESUMO

PTEN is a dual lipid and protein phosphatase that antagonizes PI3K as well as other signaling pathways and regulates cellular survival and growth. However, its potential role in cardiac ischemia/reperfusion injury remains unknown. We established a transgenic mouse model with inducible and cardiac specific deletion of Pten gene (Pten(CKO)) in adult heart via tamoxifen dependent Cre-loxP mediated DNA recombination. 3 weeks after tamoxifen induced PTEN inactivation, elevated PI3K activity was observed in the Pten(CKO) hearts as determined from downstream AKT signaling. No significant differences in cardiac function as well as chamber size were observed between Pten(CKO) and Control animals based on echocardiography. In response to 30 min ischemia followed by 120 min reperfusion in Langendorff preparations, Pten(CKO) hearts developed significantly better function recovery than Control animals. At 60 min post reperfusion, the recovery of LVDP reached 77.9% of pre-ischemia basal in Pten(CKO) hearts vs 44.2% of Control (p<0.01). Consistent with the observed functional improvement, TTC staining revealed a significant reduction in infarct size in Pten(CKO) hearts compared with Control (24.2% vs 39.7%, p<0.05). Pten(CKO) hearts had significantly fewer apoptosis positive cardiomyocytes after I/R injury as identified by TUNEL staining. Furthermore, ERK activity and BCL-2 expression were not affected at basal but became significantly higher after ischemia/reperfusion in Pten(CKO) hearts. These data indicate that PTEN may play a role in ischemia/reperfusion injury by inhibiting anti-apoptotic survival signals. Inhibiting PTEN may serve as a potential approach to exert cardiac protection against ischemia reperfusion injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , PTEN Fosfo-Hidrolase/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Ativação Enzimática/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Células Musculares/citologia , Células Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Tamoxifeno/farmacologia
14.
Circulation ; 116(6): 596-605, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17646583

RESUMO

BACKGROUND: Cardiac hypertrophy is a major risk factor for arrhythmias and sudden cardiac death. However, the underlying signaling mechanisms involved in the induction of arrhythmia and electrophysiological remodeling in cardiac hypertrophy are unclear. METHODS AND RESULTS: Using an inducible gene-switch approach, we achieved tissue-specific and temporally regulated induction of a well-established hypertrophic pathway, the Ras-Raf-mitogen-activated protein kinases pathway, in adult mouse heart. On Ras activation, the transgenic animal developed ventricular hypertrophy and arrhythmias. The development of ventricular arrhythmias was temporally correlated with electrophysiological remodeling in isolated ventricular myocytes, including action potential prolongation, increased sodium-calcium exchanger activity, reduced outward potassium currents, sarcoplasmic reticulum Ca2+ defects, and loss of protein kinase A-dependent phospholamban phosphorylation. From genome-wide expression profiling, we discovered a selective induction of G alpha inhibiting subunit 1 (Gi alpha1) expression in the Ras transgenic heart. Treatment of transgenic animals with the Gi/o inhibitor pertussis toxin normalized the phospholamban phosphorylation by protein kinase A, reversed the action potential prolongation, and significantly reduced the frequency of cardiac arrhythmias in Ras transgenic animals. CONCLUSIONS: These data suggest that selective induction of G alpha inhibiting subunit 1 expression and activity is a novel downstream event in hypertrophic signaling that may be a critical factor leading to cellular electrophysiological remodeling and cardiac arrhythmias in hypertrophic cardiomyopathy.


Assuntos
Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/biossíntese , Remodelação Ventricular/fisiologia , Animais , Arritmias Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Eletrocardiografia/métodos , Eletrofisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Remodelação Ventricular/genética
15.
Dis Aquat Organ ; 74(2): 95-105, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17432038

RESUMO

A rhabdovirus associated with a lethal hemorrhagic disease in cultured turbot Scophthalmus maximus Linnaeus was isolated. The virus induced typical cytopathogenic effects (CPE) in 9 of 15 fish cell lines examined and was then propagated and isolated from infected carp leucocyte cells (CLC). Electron microscopy observations revealed that the negatively stained virions had a typical bullet-shaped morphology with one rounded end and one flat base end. The bullet-shaped morphology was more obvious and clear in ultrathin sections of infected cells. Experimental infections also indicated that the S. maximus rhabdovirus (SMRV) was not only a viral pathogen for cultured turbot, but also had the ability to infect other fish species, such as freshwater grass carp. A partial nucleotide sequence of the SMRV polymerase gene was determined by RT-PCR using 2 pairs of degenerate primers designed according to the conserved sequences of rhabdovirus polymerase genes. Homology analysis, amino acid sequence alignment, and phylogenetic relationship analysis of the partial SMRV polymerase sequence indicated that SMRV was genetically distinct from other rhabdoviruses. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified SMRV revealed 5 major structural proteins, and their molecular masses were estimated to be about 250, 58, 47, 42, and 28 kDa. Significant serological reactivity differences were also observed between SMRV and its nearest neighbor, spring viremia of carp virus (SVCV). The data suggest that SMRV is likely a novel fish rhabdovirus, although it is closely related to rhabdoviruses in the genus Vesiculovirus.


Assuntos
Doenças dos Peixes/virologia , Linguados/virologia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/patogenicidade , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/metabolismo , Carpas/virologia , Linhagem Celular , Efeito Citopatogênico Viral , Genes Virais/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Filogenia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Rhabdoviridae/ultraestrutura , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
16.
Circ Res ; 96(11): 1208-16, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15905459

RESUMO

During pregnancy, the heart develops a reversible physiological hypertrophic growth in response to mechanical stress and increased cardiac output; however, underlying molecular mechanisms remain unknown. Here, we investigated pregnancy-related changes in heart structure, function, and gene expression of known markers of pathological hypertrophy and cell stretching in mice hearts. In late pregnancy, hearts show eccentric hypertrophy, as expected for a response to volume overload, with normal left ventricular diastolic function and a moderate reduction in systolic function. Pregnancy-related physiological heart hypertrophy does not induce expression changes of known markers of pathological hypertrophy like: alpha- and beta-myosin heavy chain, atrial natriuretic factor, phospholamban, and sarcoplasmic reticulum Ca2+-ATPase. Instead, it induces the remodeling of Kv4.3 channel and increased c-Src tyrosine kinase activity, a stretch-responsive kinase. Cardiac Kv4.3 channel gene expression was downregulated by approximately 3- to 5-fold, both at the mRNA and protein levels, and was paralleled by a reduction in transient outward K+ currents, a longer action potential and by prolongation of the QT interval. Downregulation of cardiac Kv4.3 transcripts was mimicked by estrogen treatment in ovariectomized mice, and was prevented by the estrogen receptor antagonist ICI 182,780. c-Src activity increased by approximately 2-fold in late pregnancy and after estrogen treatment. We propose that, in addition to mechanical stress, the rise of estrogen toward the end of pregnancy contributes to pregnancy-related heart hypertrophy by increased c-Src activity and that the rise of estrogen is one factor that down regulates cardiac Kv4.3 gene expression providing a molecular correlate for a longer QT interval in pregnancy.


Assuntos
Cardiomegalia/fisiopatologia , Complicações Cardiovasculares na Gravidez/fisiopatologia , Potenciais de Ação , Animais , Proteína Tirosina Quinase CSK , Cardiomegalia/etiologia , Cardiomegalia/patologia , Ecocardiografia , Eletrocardiografia , Estradiol/análogos & derivados , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Fulvestranto , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Canais de Potássio/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/análise , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Gravidez , Complicações Cardiovasculares na Gravidez/etiologia , Complicações Cardiovasculares na Gravidez/patologia , Proteínas Tirosina Quinases/metabolismo , Canais de Potássio Shal , Função Ventricular Esquerda , Quinases da Família src
17.
Mol Ther ; 11(4): 531-41, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15771956

RESUMO

Virotherapy with oncolytic viruses is a highly promising approach for cancer therapy. To improve further the therapeutic effect of oncolytic viruses, therapeutic genes have been incorporated into these types of vectors. In this study, we have inserted hTRAIL (approved gene symbol TNFSF10) into the ZD55 vector, which was based on deletion of the adenoviral E1B 55-kDa gene and could replicate in and lyse p53-deficient tumors. Our data shows that infection of colorectal carcinoma cells with ZD55-hTRAIL resulted in tumor cell death that was much greater than that induced by ZD55 vector or replication-defective adenovirus expressing hTRAIL. In contrast to these, ZD55-hTRAIL did not induce any cytopathic effect in normal cells. Treatment of established tumor with ZD55-hTRAIL resulted in dramatic inhibition of tumor growth in an animal model of colorectal carcinoma. However, when the established tumors were treated by coadministration of ZD55-hTRAIL and Ad-k5, we observed complete eradication of the established tumors in all animals treated with the combined therapy. This strong anti-tumor activity was due to the fact that two genes may act with compensative (or synergic) effect through different mechanisms to kill tumors. Therefore, targeting dual gene-virotherapy may be one of the best strategies for cancer therapy if two suitable genes are chosen.


Assuntos
Adenoviridae/genética , Carcinoma/terapia , Neoplasias Colorretais/terapia , Terapia Genética/métodos , Glicoproteínas de Membrana/genética , Fragmentos de Peptídeos/genética , Plasminogênio/genética , Fator de Necrose Tumoral alfa/genética , Proteínas E1B de Adenovirus/genética , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Carcinoma/genética , Neoplasias Colorretais/genética , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Replicação Viral/genética
18.
J Interferon Cytokine Res ; 24(4): 219-30, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15144568

RESUMO

To improve the therapeutic effect of ONYX015, an E1B55kD-deleted replication-competent adenovirus, ZD55 was constructed and armed with the therapeutic gene hTRAIL to form ZD55-hTRAIL, which was used for cancer therapy and which we call Targeting Gene-ViroTherapy. In vitro experiments with SW620, HCT116, and HT29 colorectal carcinoma cell lines demonstrated that they were all sensitive to ZD55-hTRAIL, and especially sensitive to ZD55-hTRAIL plus 5-fluorouracil (5-FU) treatment. In the SW620 xenograft tumor model, various treatment groups showed marked differences at week 11, with the tumor volume for the phosphate-buffered saline (PBS) treatment group >1700 mm3, for 5-FU > 1300 mm3, for ONYX015 1051.3 mm3, for ZD55-hTRAIL 600.05 mm3, and for ZD55-hTRAIL plus 5-FU 230.2 mm3. At the end of week 14, tumor-bearing mice in the other groups almost all died, whereas all the mice in the combined treatment group were alive, with one mouse tumor free. By transmission electron microscopy (TEM) assay, most tumor cells treated with ONYX015 or with ZD55-hTRAIL singly or in combination with 5-FU were lysed due to viral propagation. RT-PCR analysis and immunohistochemistry examination revealed that hTRAIL was expressed in ZD55-hTRAIL-treated SW620 tumor tissue. Furthermore, no detectable hepatoxicity was found by serum enzyme level analysis. These results suggest that ZD55-hTRAIL alone or in combination with 5-FU may have potential clinical implications.


Assuntos
Adenoviridae/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Colorretais/terapia , Fluoruracila/uso terapêutico , Terapia Genética , Adenoviridae/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/virologia , Sinergismo Farmacológico , Fluoruracila/farmacologia , Vetores Genéticos/química , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Vetores Genéticos/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/uso terapêutico , Camundongos , Camundongos Nus , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Dis Aquat Organ ; 57(1-2): 27-34, 2003 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-14735918

RESUMO

The causative agent of lymphocystis disease that frequently occurs in cultured flounder Paralichthys olivaceus in China is lymphocystis virus (LV). In this study, 13 fish cell lines were tested for their susceptibility to LV. Of these, 2 cell lines derived from the freshwater grass carp Ctenopharyngodon idellus proved susceptible to the LV, and 1 cell line, GCO (grass carp ovary), was therefore used to replicate and propagate the virus. An obvious cytopathic effect (CPE) was first observed in cell monolayers at 1 d post-inoculation, and at 3 d this had extended to about 75% of the cell monolayer. However, no further CPE extension was observed after 4 d. Cytopathic characteristics induced by the LV were detected by Giemsa staining and fluorescence microscopic observation with Hoechst 33258 staining. The propagated virus particles were also observed by electron microscopy. Ultrastructure analysis revealed several distinct cellular changes, such as chromatin compaction and margination, vesicle formation, cell-surface convolution, nuclear fragmentation and the occurrence of characteristic 'blebs' and cell fusion. This study provides a detailed report of LV infection and propagation in a freshwater fish cell line, and presents direct electron microscopy evidence for propagation of the virus in infected cells. A possible process by which the CPEs are controlled is suggested.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Linguado/virologia , Iridoviridae/isolamento & purificação , Animais , Carpas , Fusão Celular , Linhagem Celular , China , Efeito Citopatogênico Viral , Água Doce , Iridoviridae/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...