Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339504

RESUMO

ß-Ga2O3 photodetectors have the advantages of low dark current and strong radiation resistance in UV detection. However, the limited photocurrent has restricted their applications. Herein, MSM UV photodetectors based on (InxGa1-x)2O3 (x = 0, 0.1, 0.2, 0.3) by a sol-gel method were fabricated and studied. The doping of indium ions in Ga2O3 leads to lattice distortion and promotes the formation of oxygen vacancies. The oxygen vacancies in (InxGa1-x)2O3 can be modulated by various proportions of indium, and the increased oxygen vacancies contribute to the enhancement of electron concentration. The results show that the amorphous In0.4Ga1.6O3 photodetector exhibited improved performances, including a high light-to-dark current ratio (2.8 × 103) and high responsivity (739.2 A/W). This work provides a promising semiconductor material In0.4Ga1.6O3 for high-performance MSM UV photodetectors.

2.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38150735

RESUMO

ß-Ga2O3has been widely investigated for its stability and thermochemical properties. However, the preparation ofß-Ga2O3thin films requires complex growth techniques and high growth temperatures, and this has hindered the application ofß-Ga2O3thin films. In this study,ß-Ga2O3thin films with good crystalline quality were prepared using a green method, and an ultraviolet (UV) detector based onß-Ga2O3with a photocurrent of 2.54 × 10-6A and a dark current of 1.19 × 10-8A has been developed. Two-dimensional materials have become premium materials for applications in optoelectronic devices due to their high conductivity. Here, we use the suitable energy band structure between Nb2C and Ga2O3to create a high carrier migration barrier, which reduces the dark current of the device by an order of magnitude. In addition, the device exhibits solar-blind detection, high responsiveness (28 A W-1) and good stability. Thus, the Nb2C/ß-Ga2O3heterojunction is expected to be one of the promising devices in the field of UV photoelectric detection.

3.
Micromachines (Basel) ; 14(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38004980

RESUMO

In the past few years, cavity optomechanical systems have received extensive attention and research and have achieved rapid development both theoretically and experimentally. The systems play an important role in many fields, such as quantum information processing, optomechanical storage, high-precision measurement, macroscopic entanglement, ultrasensitive sensors and so on. Photon manipulation has always been one of the key tasks in quantum information science and technology. Photon blockade is an important way to realize single photon sources and plays an important role in the field of quantum information. Due to the nonlinear coupling of the optical force system, the energy level is not harmonic, resulting in a photon blockade effect. In this paper, we study the phase-controlled tunable unconventional photon blockade in a single-atom-cavity system, and the second-order nonlinear crystals are attached to the cavity. The cavity interacts with squeezed light, which results in a nonlinear process. The system is driven by a complex pulsed laser, and the strength of the coherent driving contains the phase. We want to study the effect of squeezed light and phase. We use the second-order correlation function to numerically and theoretically analyze the photon blockade effect. We show that quantum interference of two-photon excitation between three different transition pathways can cause a photon blockade effect. When there is no squeezed light, the interference pathways becomes two, but there are still photon blockade effects. We explore the influence of the tunable phase and second-order nonlinear strength on the photon blockade effect. We calculate the correlation function and compare the numerical results with the analytical results under certain parameters and find that the agreement is better.

4.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571510

RESUMO

The application of TiO2 nanorods in the field of ultraviolet (UV) photodetectors is hindered by a high dark current, which is attributed to crystal surface defects and intrinsic excitation by carrier thermal diffusion. Here, a photodetector based on polycrystalline perovskite MAPbCl3/TiO2 nanorods heterojunctions has been fabricated to overcome the shortcoming. The structure was composed of horizontal MAPbCl3 polycrystalline and vertically aligned TiO2 nanorods array. Many localized depletion regions at the MAPbCl3/TiO2 interface can reduce the dark current. The TiO2/MAPbCl3 detector shows high performance including a high ratio of light-dark current of about six orders of magnitude, which is much larger than that of the TiO2 detector. This study indicates the potential in the TiO2/MAPbCl3 heterojunction to fabricate high-performance UV detectors.

5.
ACS Appl Mater Interfaces ; 14(12): 14729-14738, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35312272

RESUMO

Pb-Sn binary halide perovskites are a promising photovoltaic material due to their low toxicity and optical absorption spectrum well matched to the solar spectrum. However, the ready oxidation of Sn2+ to Sn4+ makes the material system currently too unstable to commercialize. Herein, ligand engineering based on antioxidative tyramine (hydrochloride, TACl) is presented for the first time to increase the stability of this material system. Using this strategy, we generate a two-dimensional (2D) capping layer on top of a standard three-dimensional Pb-Sn film. After capping, the surface defects can be passivated and the TACl-based 2D perovskite effectively protected Sn2+ from oxidation, which stabilized the Sn-Pb perovskite composition, avoiding the Pb-based perovskite formation. It is further found that the TACl treatment suppressed the halide segregation and improved the perovskite film photostability. Cell efficiency increases from 16.25 to 18.28% and device lifetime (T80) increases from less than 100 to over 1000 h. Our finding suggests that tuning ligand form/function represents a potentially highly productive direction to explore when trying to produce stable tin-based perovskite devices.

6.
J Hazard Mater ; 423(Pt B): 127193, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844341

RESUMO

Efficient, accurate and reliable detection and monitoring of H2S is of significance in a wide range of areas: industrial production, medical diagnosis, environmental monitoring, and health screening. However the rapid corrosion of commercial platinum-on-carbon (Pt/C) sensing electrodes in the presence of H2S presents a fundamental challenge for fuel cell gas sensors. Herein we report a solution to the issue through the design of a sensing electrode, which is based on Pt supported on mesoporous titanium chromium nitrides (Pt/Ti0.5Cr0.5N). Its desirable characteristics are due to its high electrochemical stability and strong metal-support interactions. The Pt/Ti0.5Cr0.5N-based sensors exhibit a much smaller attenuation (1.3%) in response to H2S than Pt/C-sensor (40%), after 2 months sensing test. Furthermore, the Pt/Ti0.5Cr0.5N-based sensors exhibit negligible cross response to other interfering gases compared with hydrogen sulfide. Results of density functional theory calculation also verify the excellent long-term stability and selectivity of the gas sensor. Our work hence points to a new sensing electrode system that offers a combination of high performance and stability for fuel-cell gas sensors.


Assuntos
Sulfeto de Hidrogênio , Platina , Eletrodos , Gases , Titânio
8.
ACS Appl Mater Interfaces ; 13(12): 14423-14432, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33733730

RESUMO

There has been a growing interest in the development of efficient flexible organic solar cells (OSCs) due to their unique capacity to provide energy sources for flexible electronics. To this end, it is required to design a compatible interlayer with low processing temperature and high electronic quality. In this work, we present that the electronic quality of the ZnO interlayer fabricated from a low-temperature (130 °C) sol-gel method can be significantly improved by doping an organic small molecule, TPT-S. The doped TPT-S, on the one hand, passivates uncoordinated Zn-related defects by forming N-Zn bonds. On the other hand, photoinduced charge transfer from TPT-S to ZnO is confirmed, which further fills up electron-deficient trap states. This renders ZnO improved electron transport capability and reduced charge recombination. By illuminating devices with square light pulses of varying intensities, we also reveal that an unfavorable charge trapping/detrapping process observed in low-temperature-processed devices is significantly inhibited after TPT-S doping. OSCs based on PBDB-T-2F:IT-4F with ZnO:TPT-S being the cathode interlayer yield efficiencies of 12.62 and 11.33% on rigid and flexible substrates, respectively. These observations convey the practicality of such hybrid ZnO in high-performance flexible devices.

9.
Nanotechnology ; 30(46): 465501, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31370044

RESUMO

An FTO/TiO2/MoO3 based UV detector has been fabricated through the synthesis of TiO2 nanowires (NWs) on FTO using the hydrothermal method, the preparation of MoO3 on TiO2 NWs by the spin-coating method, after the hydrothermal synthesis, and the preparation of Ag electrodes on the FTO and MoO3. The detector exhibits an excellent performance of photo-to-dark current ratio of more than two orders of magnitude. This performance is produced because the dark current under 2.2 V bias has been significantly inhibited due to the electronic potential well formed by the energy band distribution while the photocurrent has increased in comparison with FTO/TiO2 based detectors under the same conditions which also have a higher photo-to-dark current ratio without the MoO3 content. Not only does this study take advantage of 1D NWs and 2D nanostructures, but it also provides a new way to inhibit the dark current of detectors.

10.
J Nanosci Nanotechnol ; 19(11): 7083-7088, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039861

RESUMO

In this study, CdS nanowires (NWs)/Ag nanoparticle materials (CdS@Ag) with Schottky junction were synthesized by a simple process. The Ag nanoparticles with a diameter of 3-10 nm were uniformly scattered on the surface of CdS NWs with an average diameter of 30 nm. The gas sensing properties and the effect of Ag content and relative humidity on the ethanol sensing properties of CdS NWs were investigated in detail. When the relative humidity was below 60% RH, the sensor, especially the one based on CdS@Ag0.1, exhibited an enhanced ethanol sensing response and selectivity compared with that of pristine CdS NWs, which was believed that Ag catalyzed the reaction between ionized oxygen species and ethanol. However, excessive Ag content does not mean a higher response and even decreased the response. Also, the stability of CdS NWs and CdS@Ag NWs was also investigated, which were almost stable for four months.

11.
Nanotechnology ; 30(29): 295502, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30947163

RESUMO

TiO2 has been widely used in ultraviolet (UV) photodetectors, but due to the large number of structural defects and strong band-to-band recombination of the exciton in TiO2, the devices usually have large dark current (I d) and low light current (I l), which seriously reduces the sensitivity and responsivity (R) of the TiO2 based devices. In this work, carbon (C) quantum dots (QDs) are introduced into TiO2 film to ameliorate these issues. Due to the difference of work function between TiO2 nanoparticles and C QDs, the built-in electric field (E bi) can be formed, which effectively facilitates the photogenerated exciton dissociation in the TiO2 film under UV illumination. Meanwhile, the constructed depletion region in dark reduces the majority carrier density, thus decreasing the I d of the photodetector. Moreover, the E bi and depletion region will also contribute to the faster charge collection under UV illumination and recombination of the electron in dark, which is beneficial for the improved response/recovery speed of the device.

12.
Mikrochim Acta ; 186(4): 222, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30847573

RESUMO

Hierarchical Co3O4@NiMoO4 core-shell nanowires (NWs) were synthesized utilizing a two-step hydrothermal method. The NWs show a high chemiresistive response (at a temperature of 255 °C) to xylene, with an Rgas/Rair ratio of 24.6 at 100 ppm xylene, while the response towards toluene, benzene, ethanol, and acetone, CO, H2S and NO2 is much weaker. In contrast, pure Co3O4 nanowires exhibit weak responses to all the vapors/gases and poor selectivity. The new NW sensor displays an almost linear response (1-100 ppm) to xylene and a lower detection limit of 424 ppb. The remarkable gas sensing characteristics are attributed to the synergistic catalytic effect and the formation of a heterostructure between Co3O4 and NiMoO4. Graphical abstract Schematic presentation of a xylene vapor chemiresistive sensor based on Co3O4@NiMoO4 core-shell nanowires. The Co3O4@NiMoO4 core-shell nanowires-based sensor exhibits a high response (24.6) to 100 ppm xylene at 255 °C and high response/recovery speed (13-15 and 25-29 s).

13.
Nanotechnology ; 29(46): 465501, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30160243

RESUMO

A visible-blind ultraviolet (UV) photodetector (PD) based on TiO2/polyvinyl carbazole doped with poly {[2,7-(9-(20-ethylhexyl)-9-hexyl-fluorene])-alt-[5,50-(40,70-di-2-thienyl-20,10,30-benzothid-iazole)]} (PFTBT) was successfully fabricated. The introduced PFTBT exhibits high absorbance in the UV region and high conductivity which increases the device absorbance and the efficiency of carrier mobility. Besides, PFTBT acts as traps which can increase the concentration of the majority carrier. Therefore, the doped device exhibits high responsivity and high specific detectivity with the value of 0.22 A W-1 and 1.78 × 1012 Jones which respectively has a 3.6 and 2.6 times greater enhancement than the device without doping. The response time is also improved from 27 ms to 22 ms. Owing to the different absorbances that the materials have, the PD has a narrow detection range from 320 nm to 340 nm which is helpful to the study of the specific wavelength. In other words, the research provides a potential way to fabricate practical high-performance UVPDs.

14.
ACS Appl Mater Interfaces ; 10(17): 15314-15321, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29652469

RESUMO

Multishell, stable, porous metal-oxide microspheres (Ni-Co oxides, Co3O4 and NiO) have been synthesized through the amorphous coordination polymer-based self-templated method. Both oxides of Ni and Co show poor selectivity to xylene, but the composite phase has substantial selectivity (e.g., Sxylene/ Sethanol = 2.69) and remarkable sensitivity (11.5-5 ppm xylene at 255 °C). The short response and recovery times (6 and 9 s), excellent humidity-resistance performance (with coefficient of variation = 11.4%), good cyclability, and long-term stability (sensitivity attenuation of ∼9.5% after 30 days and stable sensitivity thereafter) all show that this composite is a competitive solution to the problem of xylene sensing. The sensing performances are evidently due to the high specific surface area and the nano-heterostructure in the composite phase.

15.
Nanoscale ; 10(14): 6459-6466, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29565440

RESUMO

Applications of ZnO in photodetectors are limited by the great quantity of extrinsic majority carriers due to structural defects and difficult exciton dissociation due to the large exciton binding energy; these generally lead to a higher dark current (Id) and lower light current (Il), severely degrading the responsivity and detectivity. C dots are incorporated into an annealing-free ZnO layer to innovatively construct a local built-in electric field (Ebi) using the difference in the work functions; this simultaneously overcomes the drawbacks of the pristine ZnO photosensitive layer. In dark, the extrinsic majority carrier of ZnO is depleted around the incorporated C dots due to the self-depleting effect; thus, the Id decreases. Under UV illumination, the photogenerated exciton driven by the local Ebi is easily dissociated into a free charge carrier, contributing to the improved Il. This study paves a universal way to effectively improve the detection characteristics of photoconductive devices by incorporating the local Ebi.

16.
J Nanosci Nanotechnol ; 18(3): 1882-1886, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448676

RESUMO

LiCl/NaA zeolite composites were successfully prepared by doping 1 wt%, 2 wt%, 5 wt%, and 8 wt% of LiCl into NaA zeolite. The humidity sensing properties of LiCl/NaA composites were investigated among 11% 95% relative humidity (RH). The LiCl/NaA composites exhibited better humidity sensing properties than pure NaA zeolite. The sensor made by 2 wt% Li-doped NaA zeolite possesses the best linearly in the whole RH. These results demonstrate that the LiCl/NaA composites have the potential application in humidity sensing.

17.
ACS Appl Mater Interfaces ; 9(37): 32044-32053, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28836429

RESUMO

Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO2 or ZnO) to enhance the short-circuit current (Jsc) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC71BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.

18.
ACS Appl Mater Interfaces ; 9(26): 22068-22075, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28605909

RESUMO

To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

19.
Nanoscale ; 9(26): 9095-9103, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28643838

RESUMO

A heterojunction photo-conductive ultraviolet (UV) detector was developed based on TiO2 nanowires array (NWA) surrounded by N,N'-bis-(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). The novel and effective two-step method of static infusion and dynamic solution-cleaning was employed to fill NPB into TiO2 NWA gaps and simultaneously remove the unwelcomed top NPB layer. The device fabricated via the two-step method exhibited optimal performance compared to TiO2/NPB device with top NPB layer and TiO2 NWA device. In dark conditions, the TiO2/NPB heterojunction device without top NPB was found to possess the capacity of depleting majority carriers, thereby providing improved dark-resistivity to limit the dark current (Id). Under UV illumination, the depleting effect could be eliminated by the dissociation and accumulation of photo-generated carriers between pn heterojunction, leading to increased carrier density and photo-conductivity. It cleared up the high barrier due to the removal of top NPB layer, which was beneficial for hot electron transport than the device with top NPB layer under illumination, thereby achieving an enhanced light current (Il) to Id ratio of 1.67 × 104. A simple technology is provided to prepare organic-inorganic hybrid one-dimensional array heterostructure, which plays a remarkable role in the working of the UV detector, enhancing photo-conductivity and dark-resistivity of the device.

20.
Phys Chem Chem Phys ; 19(23): 15207-15214, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28561846

RESUMO

In this contribution, a series of conducting polyfluorenes (PF) are introduced to improve interface adhesion and boost charge extraction of the TiO2 electron transport layer of inverted polymer solar cells (PSCs). After employing poly (9,9-dihexylfluorenyl-2,7-diyl) (PDF), poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PDFBT), and poly[(4-(5-(7-methyl-9,9-dioctyl-9H-fluoren-2-yl) thiophen-2-yl)-7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PFTBT) as capping layers, interfacial coherence improvement and energy loss decrease are both achieved, facilitating charge transfer from the active layer to the TiO2 layer. The optimized contact, enhanced electrical conductivity, and reduced internal resistance contribute to increased short-circuit current density and fill factor, leading to an enhanced power conversion efficiency (PCE) from 5.72% up to 7.97%. The employment of the PF capping TiO2 buffer layer provides a promising approach to develop high efficiency PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...