Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 276: 111343, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942218

RESUMO

Microalgae performance of outdoor cultivation systems is influenced by environmental and operating dynamics. Monitoring and control systems are needed to maximise biomass productivity and nutrient recovery. The goal of this work was to corroborate that pH data could be used to monitor microalgae performance by means of data from an outdoor membrane photobioreactor (MPBR) plant. In this system, microalgae photosynthetic activity was favoured over other physical and biological processes, so that the pH data dynamics was theoretically related to the microalgae carbon uptake rate (CUR). Short- and long-term continuous operations were tested to corroborate the relationship between the first derivate of pH data dynamics (pH') and microalgae photosynthetic activity. Short-term operations showed a good correlation between gross pH' values and MPBR performance. An indicator of the maximum daily average microalgae activity was assessed by a combination of on-line pH' measurements obtained in the long-term and a microalgae growth kinetic model. Both indicators contributed to the development of advanced real-time monitoring and control systems to optimise microalgae cultivation technology.


Assuntos
Microalgas , Biomassa , Concentração de Íons de Hidrogênio , Fotobiorreatores , Fotossíntese
2.
Water Sci Technol ; 81(8): 1700-1714, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32644962

RESUMO

Plant-wide modelling can be considered an appropriate approach to represent the current complexity in water resource recovery facilities, reproducing all known phenomena in the different process units. Nonetheless, novel processes and new treatment schemes are still being developed and need to be fully incorporated in these models. This work presents a short chronological overview of some of the most relevant plant-wide models for wastewater treatment, as well as the authors' experience in plant-wide modelling using the general model BNRM (Biological Nutrient Removal Model), illustrating the key role of general models (also known as supermodels) in the field of wastewater treatment, both for engineering and research.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Modelos Biológicos , Nutrientes , Esgotos
3.
Water Sci Technol ; 81(1): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32293583

RESUMO

Membrane bioreactor (MBR) models are useful tools for both design and management. The system complexity is high due to the involved number of processes which can be clustered in biological and physical ones. Literature studies are present and need to be harmonized in order to gain insights from the different studies and allow system optimization by applying a control. This position paper aims at defining the current state of the art of the main integrated MBR models reported in the literature. On the basis of a modelling review, a standardized terminology is proposed to facilitate the further development and comparison of integrated membrane fouling models for aerobic MBRs.


Assuntos
Reatores Biológicos , Membranas Artificiais , Modelos Teóricos
4.
Water Res ; 172: 115518, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31991292

RESUMO

Microalgae cultivation has been receiving increasing interest in wastewater remediation due to their ability to assimilate nutrients present in wastewater streams. In this respect, cultivating microalgae in membrane photobioreactors (MPBRs) allows decoupling the solid retention time (SRT) from the hydraulic retention time (HRT), which enables to increase the nutrient load to the photobioreactors (PBRs) while avoiding the wash out of the microalgae biomass. The reduction of the PBR light path from 25 to 10 cm increased the nitrogen and phosphorus recovery rates, microalgae biomass productivity and photosynthetic efficiency by 150, 103, 194 and 67%, respectively.The areal biomass productivity (aBP) also increased when the light path was reduced, reflecting the better use of light in the 10-cm MPBR plant. The capital and operating operational expenditures (CAPEX and OPEX) of the 10-cm MPBR plant were also reduced by 27 and 49%, respectively. Discharge limits were met when the 10-cm MPBR plant was operated at SRTs of 3-4.5 d and HRTs of 1.25-1.5 d. At these SRT/HRT ranges, the process could be operated without a high fouling propensity with gross permeate flux (J20) of 15 LMH and specific gas demand (SGDp) between 16 and 20 Nm3air·m-3permeate, which highlights the potential of membrane filtration in MPBRs. When the continuous operation of the MPBR plant was evaluated, an optical density of 680 nm (OD680) and soluble chemical oxygen demand (sCOD) were found to be good indicators of microalgae cell and algal organic matter (AOM) concentrations, while dissolved oxygen appeared to be directly related to MPBR performance. Nitrite and nitrate (NOx) concentration and the soluble chemical oxygen demand:volatile suspended solids ratio (sCOD:VSS) were used as indicators of nitrifying bacteria activity and the stress on the culture, respectively. These parameters were inversely related to nitrogen recovery rates and biomass productivity and could thus help to prevent possible culture deterioration.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Fósforo , Águas Residuárias
5.
Water Res ; 172: 115499, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978839

RESUMO

Outdoor microalgae cultivation systems treating anaerobic membrane bioreactor (AnMBR) effluents usually present ammonium oxidising bacteria (AOB) competition with microalgae for ammonium uptake, which can cause nitrite accumulation. In literature, nitrite effects over microalgae have shown controversial results. The present study evaluates the nitrite inhibition role in a microalgae-nitrifying bacteria culture. For this purpose, pilot- and lab-scale assays were carried out. During the continuous outdoor operation of the membrane photobioreactor (MPBR) plant, biomass retention time (BRT) of 2 d favoured AOB activity, which caused nitrite accumulation. This nitrite was confirmed to inhibit microalgae performance. Specifically, continuous 5-d lab-scale assays showed a reduction in the nitrogen recovery efficiency by 32, 42 and 80% when nitrite concentration in the culture accounted for 5, 10 and 20 mg N·L-1, respectively. On the contrary, short 30-min exposure to nitrite showed no significant differences in the photosynthetic activity of microalgae under nitrite concentrations of 0, 5, 10 and 20 mg N·L-1. On the other hand, when the MPBR plant was operated at 2.5-d BRT, the nitrite concentration was reduced to negligible values due to increasing activity of microalgae and nitrite oxidising bacteria (NOB). This allowed obtaining maximum MPBR performance; i.e. nitrogen recovery rate (NRR) and biomass productivity of 19.7 ± 3.3 mg N·L-1·d-1 and 139 ± 35 mg VSS·L-1·d-1, respectively; while nitrification rate (NOxR) reached the lowest value (13.5 ± 3.4 mg N·L-1·d-1). Long BRT of 4.5 d favoured NOB growth, avoiding nitrite inhibition. However, it implied a decrease in microalgae growth and the accumulation of nitrate in the MPBR effluent. Hence, it seems that optimum BRT has to be within the range 2-4.5 d in order to favour microalgae growth with respect to AOB and NOB.


Assuntos
Microalgas , Bactérias , Reatores Biológicos , Nitrificação , Nitritos , Oxirredução , Fotobiorreatores , Águas Residuárias
6.
Data Brief ; 27: 104599, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667317

RESUMO

This data in brief (DIB) article is related to a Research article entitled 'Optimising an outdoor membrane photobioreactor for tertiary sewage treatment' [1]. Data related to the effect of substrate turbidity, the ammonium concentration at which the culture reaches nitrogen-deplete conditions and the microalgae growth rate under outdoor conditions is provided. Microalgae growth rates under different substrate turbidity were obtained to assess the reduction of the culture's light availability. Lab-scale experiments showed growth rates reductions of 22-44%. Respirometric tests were carried to know the limiting ammonium concentration in this microalgae-based wastewater treatment system. Growth rates (µ) of green microalgae Scenedesmus and Chlorella obtained under outdoor conditions; i.e. 0.40 d-1 (R2 = 0.993) and 0.43 d-1 (R2 = 0.995), respectively, can be useful to obtain optimum operating conditions of membrane photobioreactor (MPBR).

7.
Data Brief ; 25: 104143, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31372477

RESUMO

This data in brief (DIB) article is related to a Research article [1]. Microalgae biomass absorb the light photons that are supplied to the culture, reducing the light availability in the inner parts of the photobioreactors. This is known as self-shading or shadow effect. This effect has been widely studied in lab conditions, but information about self-shading in outdoor photobioreactors is scarce. How this shadow effect affects the light availability in an outdoor photobioreactor was evaluated. In addition, advantages and disadvantages of different artificial light sources which can overcome light limitation are described.

8.
Bioresour Technol ; 290: 121788, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326649

RESUMO

Two outdoor photobioreactors were operated to evaluate the effect of variable ambient temperature on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Four experiments were carried out in different seasons, maintaining the temperature-controlled PBR at around 25 °C (by either heating or cooling), while the temperature in the non-temperature-controlled PBR was allowed to vary with the ambient conditions. Temperatures in the range of 15-30 °C had no significant effect on the microalgae cultivation performance. However, when the temperature rose to 30-35 °C microalgae viability was significantly reduced. Sudden temperature rises triggered AOB growth in the indigenous microalgae culture, which worsened microalgae performance, especially when AOB activity made the system ammonium-limited. Microalgae activity could be recovered after a short temperature peak over 30 °C once the temperature dropped, but stopped when the temperature was maintained around 28-30 °C for several days.


Assuntos
Chlorella , Microalgas , Bactérias , Biomassa , Fotobiorreatores , Temperatura
9.
J Environ Manage ; 245: 76-85, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150912

RESUMO

The operation of an outdoor membrane photobioreactor plant which treated the effluent of an anaerobic membrane bioreactor was optimised. Biomass retention times of 4.5, 6, and 9 days were tested. At a biomass retention time of 4.5 days, maximum nitrogen recovery rate:light irradiance ratios, photosynthetic efficiencies and carbon biofixations of 51.7 ±â€¯14.3 mg N·mol-1, 4.4 ±â€¯1.6% and 0.50 ±â€¯0.05 kg CO2·m3influent, respectively, were attained. Minimum membrane fouling rates were achieved when operating at the shortest biomass retention time because of the lower solid concentration and the negligible amount of cyanobacteria and protozoa. Hydraulic retention times of 3.5, 2, and 1.5 days were tested at the optimum biomass retention times of 4.5 days under non-nutrient limited conditions, showing no significant differences in the nutrient recovery rates, photosynthetic efficiencies and membrane fouling rates. However, nitrogen recovery rate:light irradiance ratios and photosynthetic efficiency significantly decreased when hydraulic retention time was further shortened to 1 day, probably due to a rise in the substrate turbidity which reduced the light availability in the culture. Optimal carbon biofixations and theoretical energy recoveries from the biomass were obtained at hydraulic retention time of 3.5 days, which accounted for 0.55 ±â€¯0.05 kg CO2·m-3influent and 0.443 ±â€¯0.103 kWh·m-3influent, respectively.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Reatores Biológicos , Membranas Artificiais , Nitrogênio , Esgotos
10.
Water Sci Technol ; 78(9): 1925-1936, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30566096

RESUMO

This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD·L-1, 14.9 mg N·L-1 and 0.5 mg P·L-1, respectively. Harvested solar energy and carbon dioxide biofixation in the form of microalgae biomass allowed remarkable methane yields (399 STP L CH4·kg-1 CODinf) to be achieved, equivalent to theoretical electricity productions of around 0.52 kWh per m3 of wastewater entering the WRRF. Furthermore, 26.6% of total nitrogen influent load was recovered as ammonium sulphate, while nitrogen and phosphorus were recovered in the biosolids produced (650 ± 77 mg N·L-1 and 121.0 ± 7.2 mg P·L-1).


Assuntos
Reatores Biológicos , Conservação dos Recursos Hídricos/métodos , Esgotos , Purificação da Água/métodos , Recursos Hídricos , Nitrogênio , Sulfatos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
11.
Waste Manag ; 80: 299-309, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30455011

RESUMO

This study describes a model-based method for real-time optimization of the key filtration parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists of an initial screening to find out adequate filtration conditions and a real-time optimizer applied to a periodically calibrated filtration model for minimizing the operating costs. The initial screening consists of two statistical analyses: (1) Morris screening method to identify the key filtration parameters; (2) Monte Carlo method to establish suitable initial control inputs values. The operating filtration cost after implementing the control methodology was €0.047 per m3 (59.6% corresponding to energy costs) when treating UWW and €0.067 per m3 when adding FW due to higher fouling rates. However, FW increased the biogas productivities, reducing the total costs to €0.035 per m3. Average downtimes for reversible fouling removal of 0.4% and 1.6% were obtained, respectively. The results confirm the capability of the proposed control system for optimizing the AnMBR performance when treating both substrates.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Biocombustíveis , Filtração , Membranas Artificiais
12.
Water Sci Technol ; 78(1-2): 195-206, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101802

RESUMO

As microalgae have the ability to simultaneously remove nutrients from wastewater streams while producing valuable biomass, microalgae-based wastewater treatment is a win-win strategy. Although recent advances have been made in this field in lab conditions, the transition to outdoor conditions on an industrial scale must be further investigated. In this work an outdoor pilot-scale membrane photobioreactor plant was operated for tertiary sewage treatment. The effects of different parameters on microalgae performance were studied including: temperature, light irradiance (solar and artificial irradiance), hydraulic retention time (HRT), biomass retention time (BRT), air sparging system and influent nutrient concentration. In addition the competition between microalgae and ammonium oxidising bacteria for ammonium was also evaluated. Maximum nitrogen and phosphorus removal rates of 12.5 ± 4.2 mgN·L-1·d-1 and 1.5 ± 0.4 mgP·L-1·d-1, respectively, were achieved at a BRT of 4.5 days and HRT of 2.5 days, while a maximum biomass productivity of 78 ± 13 mgVSS·L-1·d-1 (VSS: volatile suspended solids) was reached. While the results obtained so far are promising, they need to be improved to make the transition to industrial scale operations feasible.


Assuntos
Fotobiorreatores , Águas Residuárias/química , Purificação da Água , Desenho de Equipamento , Microalgas/metabolismo , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/isolamento & purificação , Fósforo/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos
13.
Bioresour Technol ; 244(Pt 1): 15-22, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28777986

RESUMO

Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5mgSL-1 reduced OPR by 43%, while a concentration of 50mgSL-1 came close to completely inhibiting microalgae growth. The long-term experiments revealed that the presence of sulphide in the influent had inhibitory effects at sulphide concentrations above 20mgSL-1 in the culture, but not at concentrations below 5mgSL-1. These conditions favoured Chlorella growth over that of Scenedesmus.


Assuntos
Microalgas , Sulfetos , Chlorella , Scenedesmus , Esgotos
14.
Environ Technol ; 38(1): 42-52, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27126614

RESUMO

The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.


Assuntos
Reatores Biológicos , Lógica Fuzzy , Metano/biossíntese , Eliminação de Resíduos Líquidos/métodos , Ácidos Graxos Voláteis/análise , Resíduos Industriais , Águas Residuárias/análise , Vinho
15.
J Environ Manage ; 179: 83-92, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27179448

RESUMO

The objective of this study was to evaluate the economic and environmental sustainability of a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to €0.023 per m(3) of treated water) when treating low-sulphate influent. Life cycle analysis (LCA) results revealed that operating at high sludge retention times (70 days) and treating UWW jointly with OFMSW enhances the overall environmental performance of AnMBR technology.


Assuntos
Eliminação de Resíduos/métodos , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Reatores Biológicos , Custos e Análise de Custo , Incineração , Membranas Artificiais , Metano/metabolismo , Eliminação de Resíduos/economia , Esgotos , Resíduos Sólidos , Sulfatos/química , Temperatura , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/análise , Águas Residuárias/química
16.
Environ Technol ; 37(18): 2298-315, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26829316

RESUMO

The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.


Assuntos
Reatores Biológicos , Membranas Artificiais , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Anaerobiose , Metano , Temperatura , Águas Residuárias
17.
J Environ Manage ; 166: 45-54, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26473754

RESUMO

The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies.


Assuntos
Poluição Ambiental , Membranas Artificiais , Urbanização , Águas Residuárias/química , Purificação da Água , Aerobiose , Anaerobiose , Reatores Biológicos/microbiologia , Análise Custo-Benefício , Poluição Ambiental/economia , Poluição Ambiental/prevenção & controle , Aquecimento Global , Modelos Teóricos , Esgotos/química , Esgotos/microbiologia , Águas Residuárias/microbiologia , Purificação da Água/economia , Purificação da Água/métodos
18.
Bioresour Technol ; 158: 365-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24650614

RESUMO

The results of a global sensitivity analysis of a filtration model for submerged anaerobic MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the less- (or non-) influential factors of the model in order to facilitate model calibration and (2) validate the modelling approach (i.e. to determine the need for each of the proposed factors to be included in the model). The sensitivity analysis was conducted using a revised version of the Morris screening method. The dynamic simulations were conducted using long-term data obtained from an AnMBR plant fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, six were identified as influential, i.e. those calibrated using off-line protocols. A dynamic calibration (based on optimisation algorithms) of these influential factors was conducted. The resulting estimated model factors accurately predicted membrane performance.


Assuntos
Reatores Biológicos , Filtração/métodos , Membranas Artificiais , Modelos Teóricos , Anaerobiose , Calibragem
19.
Bioresour Technol ; 149: 532-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24119499

RESUMO

The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent.


Assuntos
Reatores Biológicos , Cidades , Meio Ambiente , Temperatura , Águas Residuárias/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Anaerobiose , Biocombustíveis , Membranas Artificiais , Metano/análise , Esgotos , Sulfatos/análise , Eliminação de Resíduos Líquidos
20.
Water Sci Technol ; 67(7): 1481-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23552235

RESUMO

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


Assuntos
Modelos Teóricos , Purificação da Água , Reatores Biológicos , Precipitação Química , Simulação por Computador , Cinética , Nitritos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...